Gradual Verification for Smart Contracts
- URL: http://arxiv.org/abs/2311.13351v2
- Date: Wed, 3 Jul 2024 16:23:18 GMT
- Title: Gradual Verification for Smart Contracts
- Authors: Haojia Sun, Kunal Singh, Jan-Paul Ramos-Dávila, Jonathan Aldrich, Jenna DiVincenzo,
- Abstract summary: Algos facilitate secure resource transactions through smart contracts, yet these digital agreements are prone to vulnerabilities.
Traditional verification techniques fall short in providing comprehensive security assurances.
This paper introduces an incremental approach: gradual verification.
- Score: 0.4543820534430522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blockchains facilitate secure resource transactions through smart contracts, yet these digital agreements are prone to vulnerabilities, particularly when interacting with external contracts, leading to substantial monetary losses. Traditional verification techniques fall short in providing comprehensive security assurances, especially against re-entrancy attacks, due to the unavailable implementations of external contracts. This paper introduces an incremental approach: gradual verification. We combine static and dynamic verification techniques to enhance security, guarantee soundness and flexibility, and optimize resource usage in smart contract interactions. By implementing a prototype for gradually verifying Algorand smart contracts via the pyTEAL language, we demonstrate the effectiveness of our approach, contributing to the safe and efficient execution of smart contracts.
Related papers
- Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Solvent: liquidity verification of smart contracts [2.680854115314008]
A current limitation of smart contract verification tools is that they are not really effective in expressing and verifying liquidity properties regarding the exchange of crypto-assets.
We propose solvent, a tool aimed at verifying these kinds of properties, which are beyond the reach of existing verification tools for Solidity.
arXiv Detail & Related papers (2024-04-27T10:54:50Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
This paper presents a literature review combined with an experimental report that aims to assist developers in developing secure smarts.
It provides a list of frequent vulnerabilities and corresponding mitigation solutions.
It evaluates the community most widely used tools by executing and testing them on sample smart contracts.
arXiv Detail & Related papers (2024-03-28T19:36:53Z) - SmartML: Towards a Modeling Language for Smart Contracts [0.3277163122167434]
This paper proposes SmartML, a modeling language for smart contracts that is platform independent and easy to comprehend.
We detail its formal semantics and type system with a focus on its role in addressing security vulnerabilities.
arXiv Detail & Related papers (2024-03-11T11:27:53Z) - A security framework for Ethereum smart contracts [13.430752634838539]
This article presents ESAF, a framework for analysis of smart contracts.
It aims to unify and facilitate the task of analyzing smart contract vulnerabilities.
It can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
arXiv Detail & Related papers (2024-02-05T22:14:21Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Performance-lossless Black-box Model Watermarking [69.22653003059031]
We propose a branch backdoor-based model watermarking protocol to protect model intellectual property.
In addition, we analyze the potential threats to the protocol and provide a secure and feasible watermarking instance for language models.
arXiv Detail & Related papers (2023-12-11T16:14:04Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
We search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
In this article, we present our search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
arXiv Detail & Related papers (2023-07-05T14:30:21Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.