Applying Large Language Models to Power Systems: Potential Security
Threats
- URL: http://arxiv.org/abs/2311.13361v2
- Date: Wed, 24 Jan 2024 09:52:39 GMT
- Title: Applying Large Language Models to Power Systems: Potential Security
Threats
- Authors: Jiaqi Ruan, Gaoqi Liang, Huan Zhao, Guolong Liu, Xianzhuo Sun, Jing
Qiu, Zhao Xu, Fushuan Wen, Zhao Yang Dong
- Abstract summary: This article analyzes potential threats incurred by applying large language models (LLMs) to power systems.
It emphasizes the need for urgent research and development of countermeasures.
- Score: 14.819055765376174
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Applying large language models (LLMs) to modern power systems presents a
promising avenue for enhancing decision-making and operational efficiency.
However, this action may also incur potential security threats, which have not
been fully recognized so far. To this end, this article analyzes potential
threats incurred by applying LLMs to power systems, emphasizing the need for
urgent research and development of countermeasures.
Related papers
- Position: Towards a Responsible LLM-empowered Multi-Agent Systems [22.905804138387854]
The rise of Agent AI and Large Language Model-powered Multi-Agent Systems (LLM-MAS) has underscored the need for responsible and dependable system operation.
These advancements introduce critical challenges: LLM agents exhibit inherent unpredictability, and uncertainties in their outputs can compound, threatening system stability.
To address these risks, a human-centered design approach with active dynamic moderation is essential.
arXiv Detail & Related papers (2025-02-03T16:04:30Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [298.05093528230753]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.
We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - Recent Advances in Attack and Defense Approaches of Large Language Models [27.271665614205034]
Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities.
Their widespread deployment has raised significant safety and reliability concerns.
This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms.
arXiv Detail & Related papers (2024-09-05T06:31:37Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
Large Language Models (LLMs) have revolutionized various applications by providing advanced natural language processing capabilities.
This paper explores the threat modeling and risk analysis specifically tailored for LLM-powered applications.
arXiv Detail & Related papers (2024-06-16T16:43:58Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
This paper presents ThreatFinderAI, an approach and tool to model AI-related assets, threats, countermeasures, and quantify residual risks.
To evaluate the practicality of the approach, participants were tasked to recreate a threat model developed by cybersecurity experts of an AI-based healthcare platform.
Overall, the solution's usability was well-perceived and effectively supports threat identification and risk discussion.
arXiv Detail & Related papers (2024-03-11T08:40:01Z) - Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations [76.19419888353586]
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations.
We present our efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms.
arXiv Detail & Related papers (2024-03-09T21:07:16Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
We highlight the critical issues of robustness and safety associated with integrating large language models (LLMs) and vision-language models (VLMs) into robotics applications.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and
Vulnerabilities [14.684194175806203]
Large language models (LLMs) can be misused for fraud, impersonation, and the generation of malware.
We present a taxonomy describing the relationship between threats caused by the generative capabilities of LLMs, prevention measures intended to address such threats, and vulnerabilities arising from imperfect prevention measures.
arXiv Detail & Related papers (2023-08-24T14:45:50Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.