Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for
Classifying Imagery and Motor Signals in ECoG-Based BCIs
- URL: http://arxiv.org/abs/2311.13507v1
- Date: Wed, 22 Nov 2023 16:34:06 GMT
- Title: Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for
Classifying Imagery and Motor Signals in ECoG-Based BCIs
- Authors: Soham Bafana
- Abstract summary: This research aims to elevate the field by optimizing motor imagery classification algorithms within Brain-Computer Interfaces (BCIs)
We utilize unsupervised techniques for dimensionality reduction, namely Uniform Manifold Approximation and Projection (UMAP) and K-Nearest Neighbors (KNN)
We also evaluate the necessity of employing supervised methods such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) for classification tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motor impairments, frequently caused by neurological incidents like strokes
or traumatic brain injuries, present substantial obstacles in rehabilitation
therapy. This research aims to elevate the field by optimizing motor imagery
classification algorithms within Brain-Computer Interfaces (BCIs). By improving
the efficiency of BCIs, we offer a novel approach that holds significant
promise for enhancing motor rehabilitation outcomes. Utilizing unsupervised
techniques for dimensionality reduction, namely Uniform Manifold Approximation
and Projection (UMAP) coupled with K-Nearest Neighbors (KNN), we evaluate the
necessity of employing supervised methods such as Long Short-Term Memory (LSTM)
and Convolutional Neural Networks (CNNs) for classification tasks. Importantly,
participants who exhibited high KNN scores following UMAP dimensionality
reduction also achieved high accuracy in supervised deep learning (DL) models.
Due to individualized model requirements and massive neural training data,
dimensionality reduction becomes an effective preprocessing step that minimizes
the need for extensive data labeling and supervised deep learning techniques.
This approach has significant implications not only for targeted therapies in
motor dysfunction but also for addressing regulatory, safety, and reliability
concerns in the rapidly evolving BCI field.
Related papers
- Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
We explore a novel approach of progressively increasing neuron numbers in compact models during training phases.
We propose a method that reduces feature extraction biases and neuronal redundancy by introducing constraints based on neuron similarity distributions.
Results on CIFAR-10 and CIFAR-100 datasets demonstrated accuracy improvement.
arXiv Detail & Related papers (2024-08-23T11:16:37Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - Event-Driven Learning for Spiking Neural Networks [43.17286932151372]
Brain-inspired spiking neural networks (SNNs) have gained prominence in the field of neuromorphic computing.
It remains an open challenge how to effectively benefit from the sparse event-driven property of SNNs to minimize backpropagation learning costs.
We introduce two novel event-driven learning methods: the spike-timing-dependent event-driven (STD-ED) and membrane-potential-dependent event-driven (MPD-ED) algorithms.
arXiv Detail & Related papers (2024-03-01T04:17:59Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
Motor-imagery based brain-computer interfaces (MI-BCI) have the potential to become ground-breaking technologies for neurorehabilitation.
Due to the noisy nature of the used EEG signal, reliable BCI systems require specialized procedures for features optimization and extraction.
arXiv Detail & Related papers (2020-10-13T20:50:13Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.