Testing Continuous Spontaneous Localization model with charged
macro-molecules
- URL: http://arxiv.org/abs/2311.13966v1
- Date: Thu, 23 Nov 2023 12:28:21 GMT
- Title: Testing Continuous Spontaneous Localization model with charged
macro-molecules
- Authors: Emil Lenler-Eriksen and Michael Drewsen and Matteo Carlesso
- Abstract summary: Quantum experiments are now finally within the reach of testing such models.
We propose a method based on a two-ions confined in a linear Paul trap to possibly enhance the testing capabilities of such experiments.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the last decade, a growing interest has been devoted to models of
spontaneous collapse of the wavefunction, known also as collapse models. They
coherently solve the well-known quantum measurement problem by suitably
modifying the Schr\"odinger evolution. Quantum experiments are now finally
within the reach of testing such models (and thus testing the limits of quantum
theory). Here, we propose a method based on a two-ions confined in a linear
Paul trap to possibly enhance the testing capabilities of such experiments. The
combination of an atomic and a macromolecular ion provide a good match for the
cooling of the motional degrees of freedom and a non-negligible insight in the
collapse mechanism, respectively.
Related papers
- Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Classical, quantum and event-by-event simulation of a Stern-Gerlach
experiment with neutrons [0.0]
We present a comprehensive simulation study of the Newtonian and quantum model of a Stern-Gerlach experiment with cold neutrons.
For a sufficiently strong uniform magnetic field, the particle beam splits in two, exactly as in experiment and in concert with quantum theory.
arXiv Detail & Related papers (2022-08-18T08:24:01Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Present status and future challenges of non-interferometric tests of
collapse models [0.0]
We discuss collapse models and the quantum superposition principle.
Non-interferometric experiments proved to be the most effective in testing these models.
We provide an overview of such experiments, including cold atoms, optomechanical systems, X-rays detection, bulk heating as well as comparisons with cosmological observations.
arXiv Detail & Related papers (2022-03-08T17:49:03Z) - Extended Bose-Hubbard models with Rydberg macrodimer dressing [0.0]
We propose to use bosonic quantum gases dressed with molecular bound states in Rydberg interaction potentials.
We study the molecular Rabi coupling with respect to principal quantum number and trapping frequency of the ground state atoms.
We find a supersolid phase by slowly ramping the molecular Rabi coupling of an initially prepared superfluid.
arXiv Detail & Related papers (2021-05-31T15:30:35Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum-classical hypothesis tests in macroscopic matter-wave
interferometry [0.0]
We assess the most macroscopic matter-wave experiments to date by demonstrating interference of heavy molecules and cold atomic ensembles.
This protocol may serve as a guide for the design of future matter-wave experiments ever closer to truly macroscopic scales.
arXiv Detail & Related papers (2020-04-07T13:51:40Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.