論文の概要: Preserving The Safety And Confidentiality Of Data Mining Information In Health Care: A literature review
- arxiv url: http://arxiv.org/abs/2312.00016v1
- Date: Mon, 30 Oct 2023 05:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 13:35:06.033604
- Title: Preserving The Safety And Confidentiality Of Data Mining Information In Health Care: A literature review
- Title(参考訳): 医療におけるデータマイニング情報の安全性と信頼性:文献レビュー
- Authors: Robinson Onyemechi Oturugbum,
- Abstract要約: PPDM技術は、膨大な量のデータから実行可能な洞察を抽出することを可能にする。
機密情報の開示は患者のプライバシーを侵害する。
本稿では,プライバシ保護機構,データ保護規制,緩和戦略に関する関連研究のレビューを行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Daily, massive volume of data are produced due to the internet of things' rapid development, which has now permeated the healthcare industry. Recent advances in data mining have spawned a new field of a study dubbed privacy-preserving data mining (PPDM). PPDM technique or approach enables the extraction of actionable insight from enormous volume of data while safeguarding the privacy of individual information and benefiting the entire society Medical research has taken a new course as a result of data mining with healthcare data to detect diseases earlier and improve patient care. Data integration necessitates the sharing of sensitive patient information. However, substantial privacy issues are raised in connection with the storage and transmission of potentially sensitive information. Disclosing sensitive information infringes on patients' privacy. This paper aims to conduct a review of related work on privacy-preserving mechanisms, data protection regulations, and mitigating tactics. The review concluded that no single strategy outperforms all others. Hence, future research should focus on adequate techniques for privacy solutions in the age of massive medical data and the standardization of evaluation standards.
- Abstract(参考訳): 毎日大量のデータが生成されるのは、物のインターネットが急速に発達し、今では医療産業に浸透しているからだ。
データマイニングの最近の進歩は、プライバシー保護データマイニング(PPDM)と呼ばれる研究の新たな分野を生み出している。
PPDM技術やアプローチは、個人情報のプライバシーを守り、社会全体の利益を保ちながら、膨大な量のデータから実行可能な洞察を抽出することを可能にする。
データ統合は、センシティブな患者情報の共有を必要とする。
しかし、潜在的に機密性の高い情報の保存と送信に関して、かなりのプライバシー問題が提起されている。
機密情報の開示は患者のプライバシーを侵害する。
本稿では,プライバシ保護機構,データ保護規制,緩和戦略に関する関連研究のレビューを行う。
レビューでは、他のどの戦略よりも優れた戦略はないと結論付けている。
したがって、今後の研究は、大量の医療データの時代におけるプライバシソリューションの適切な技術と評価基準の標準化に焦点を当てるべきである。
関連論文リスト
- Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
本稿ではLynx.MDと共同で開発されたゲノム研究のためのプライバシ保護フレームワークを提案する。
このフレームワークは、重要なサイバーセキュリティとプライバシの課題に対処し、プライバシ保護によるゲノムデータの共有と分析を可能にする。
Lynx.MD内でのフレームワークの実装には、ゲノムデータをバイナリ形式に符号化し、制御された摂動技術を通じてノイズを適用することが含まれる。
論文 参考訳(メタデータ) (2024-07-12T05:43:13Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - S3PHER: Secure and Searchable System for Patient-driven HEalth data shaRing [0.0]
患者と介護者の健康データを共有するための現在のシステムは、プライバシ、機密性、同意管理といった重要なセキュリティ要件を完全には解決していない。
S3PHERは、医療データを共有するための新しいアプローチであり、患者にデータにアクセスする人、データにアクセスする人、そしていつアクセスされるかを制御する。
論文 参考訳(メタデータ) (2024-04-17T13:31:50Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
論文 参考訳(メタデータ) (2024-03-31T12:44:48Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Adherence Forecasting for Guided Internet-Delivered Cognitive Behavioral
Therapy: A Minimally Data-Sensitive Approach [59.535699822923]
インターネット提供型心理的治療(IDPT)は、メンタルヘルスのアクセシビリティを向上させるための効果的でスケーラブルな経路であると考えられている。
本研究は,最小限の敏感なログイン/ログアウトデータに依存しながら,自動アドバンス予測を行うディープラーニングアプローチを提案する。
提案されたセルフアテンションネットワークは、治療期間の1/3が経過した時点で、平均的バランスの正確さを70%以上達成した。
論文 参考訳(メタデータ) (2022-01-11T13:55:57Z) - Some Examples of Privacy-preserving Publication and Sharing of COVID-19
Pandemic Data [9.514015456352265]
我々は、パンデミック期間中に収集された3つの共通しているが異なるデータタイプを使用して、プライバシー保護の方法で、詳細な情報と個人レベルのパンデミックデータの公開と共有を図示する。
本研究では,プライバシ保証の異なるレベルにおけるシミュレーション研究を通じて,プライバシ保護情報の推論の有用性について検討し,実生活データにおけるアプローチを実証する。
論文 参考訳(メタデータ) (2021-06-18T20:07:58Z) - A Review of Anonymization for Healthcare Data [0.30586855806896046]
一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)一般データ保護規則(一般データ保護規則)
論文 参考訳(メタデータ) (2021-04-13T21:44:29Z) - Protecting Privacy and Transforming COVID-19 Case Surveillance Datasets
for Public Use [0.4462475518267084]
CDCは、個人レベルの未確認データを管轄区域から収集し、現在800万件以上の記録を保有している。
データ要素は、有用性、公開要求、およびプライバシーの影響に基づいて含まれた。
機密情報の再識別や暴露のリスクを低減するため、特定のフィールド値が抑制された。
論文 参考訳(メタデータ) (2021-01-13T14:24:20Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。