論文の概要: Linearly simplified QAOA parameters and transferability
- arxiv url: http://arxiv.org/abs/2405.00655v1
- Date: Wed, 1 May 2024 17:34:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 14:57:49.266693
- Title: Linearly simplified QAOA parameters and transferability
- Title(参考訳): 線形単純化されたQAOAパラメータと転送可能性
- Authors: Ryo Sakai, Hiromichi Matsuyama, Wai-Hong Tam, Yu Yamashiro, Keisuke Fujii,
- Abstract要約: 量子近似アルゴリズム最適化(QAOA)は、量子コンピュータを用いて最適化問題を解く方法を提供する。
ランダムイジングモデルのインスタンスと最大カット問題のインスタンスに対して得られた数値結果について述べる。
- 参考スコア(独自算出の注目度): 0.6834295298053009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) provides a way to solve combinatorial optimization problems using quantum computers. QAOA circuits consist of time evolution operators by the cost Hamiltonian and of state mixing operators, and embedded variational parameter for each operator is tuned so that the expectation value of the cost function is minimized. The optimization of the variational parameters is taken place on classical devices while the cost function is measured in the sense of quantum. To facilitate the classical optimization, there are several previous works on making decision strategies for optimal/initial parameters and on extracting similarities among instances. In our current work, we consider simplified QAOA parameters that take linear forms along with the depth in the circuit. Such a simplification, which would be suggested from an analogy to quantum annealing, leads to a drastic reduction of the parameter space from 2p to 4 dimensions with the any number of QAOA layers p. In addition, cost landscapes in the reduced parameter space have some stability on differing instances. This fact suggests that an optimal parameter set for a given instance can be transferred to other instances. In this paper we present some numerical results that are obtained for instances of the random Ising model and of the max-cut problem. The transferability of linearized parameters is demonstrated for randomly generated source and destination instances, and its dependence on features of the instances are investigated.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、量子コンピュータを用いて組合せ最適化問題を解決する方法を提供する。
QAOA回路は、コストハミルトン演算子と状態混合演算子の時間発展演算子で構成され、各演算子に対する組込み変動パラメータを、コスト関数の期待値が最小となるように調整する。
変動パラメータの最適化は古典的デバイス上で行われ、コスト関数は量子の意味で測定される。
古典的最適化を容易にするために、最適/初期パラメータの意思決定戦略や、インスタンス間の類似性を抽出するいくつかの以前の研究がある。
本研究では,回路の深さとともに線形形状をとる簡易QAOAパラメータについて検討する。
このような単純化は、量子アニールの類似から示唆されるものであり、任意の数のQAOA層 p でパラメータ空間を 2p から 4 次元に劇的に減少させる。
さらに、パラメータ空間のコストランドスケープは、異なるインスタンスに対してある程度の安定性を持つ。
この事実は、与えられたインスタンスの最適パラメータセットが他のインスタンスに転送可能であることを示唆している。
本稿では,ランダムイジングモデルと最大カット問題のインスタンスに対して得られた数値結果について述べる。
ランダムに生成したソースおよび宛先インスタンスに対して線形化パラメータの転送可能性を示し、そのインスタンスの特徴への依存について検討した。
関連論文リスト
- Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm [0.7252027234425334]
本稿では,新しい断熱パスに基づくパラメータ設定法を提案する。
本手法は, 3SAT問題に適用した場合の最適化コストを, サブ線形レベルに著しく低減する。
論文 参考訳(メタデータ) (2023-11-30T01:06:41Z) - Optimal Parameter Configurations for Sequential Optimization of
Variational Quantum Eigensolver [5.005447280753645]
変分量子固有解法(VQE)は、与えられたハミルトニアンの最小固有値/ベクトルを求めるハイブリッドアルゴリズムである。
本稿では、最適化すべきコンポーネントがシングルキュービットゲートである場合に焦点を当てる。
論文 参考訳(メタデータ) (2023-03-13T13:07:27Z) - A Parameter Setting Heuristic for the Quantum Alternating Operator
Ansatz [0.0]
本稿では,問題の大きさに応じて異なるコスト値の数が増加する場合に適したパラメータ設定戦略を提案する。
我々は、完全均一性が正確に保持され、状態と期待値の両方を記述する情報が得られるQAOAの古典的同次プロキシを定義する。
最大3ドルのQAOAレベルでは、これまでのグローバルに最適化されたアプローチによって返される近似比にマッチするパラメータを容易に見つけることができます。
論文 参考訳(メタデータ) (2022-11-17T00:18:06Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。