Coherence Distillation Unveils Einstein-Podolsky-Rosen Steering
- URL: http://arxiv.org/abs/2312.01055v2
- Date: Mon, 8 Jan 2024 08:38:09 GMT
- Title: Coherence Distillation Unveils Einstein-Podolsky-Rosen Steering
- Authors: Kuan-Yi Lee, Jhen-Dong Lin, Karel Lemr, Anton\'in \v{C}ernoch, Adam
Miranowicz, Franco Nori, Huan-Yu Ku, and Yueh-Nan Chen
- Abstract summary: We focus on quantum steering and the local distillable coherence for a steered subsystem.
We prove that the proposed steering witness can detect one-way steerable and all pure entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum coherence is a fundamental property in quantum information science.
Recent developments have provided valuable insights into its distillability and
its relationship with nonlocal quantum correlations, such as quantum discord
and entanglement. In this work, we focus on quantum steering and the local
distillable coherence for a steered subsystem. We propose a steering inequality
based on collaborative coherence distillation. Notably, we prove that the
proposed steering witness can detect one-way steerable and all pure entangled
states. Through linear optical experiments, we corroborate our theoretical
efficacy in detecting pure entangled states. Furthermore, we demonstrate that
the violation of the steering inequality can be employed as a quantifier of
measurement incompatibility. Our work provides a clear quantitative and
operational connection between coherence and entanglement, two landmark
manifestations of quantum theory and both key enablers for quantum
technologies.
Related papers
- A decision-theoretic approach to dealing with uncertainty in quantum mechanics [42.166654559515244]
We provide a decision-theoretic framework for dealing with uncertainty in quantum mechanics.
We show that measurements play the role of acts with an uncertain outcome.
We discuss the mathematical implications of our findings.
arXiv Detail & Related papers (2025-03-26T14:53:06Z) - Experimental Test of Nonlocality Limits from Relativistic Independence [0.0]
We show the existence of a fundamental limit on the extent of quantum correlations.
Our results shed light on the profound role of uncertainty in both enabling and balancing them.
arXiv Detail & Related papers (2025-01-10T23:29:00Z) - Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.<n>Our bounds are tighter than previously derived quantum TURs and KURs for single observables.<n>We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantifying incompatibility of quantum measurements through
non-commutativity [0.0]
Incompatible measurements are an important distinction between quantum mechanics and classical theories.
We explore a family of incompatibility measures based on non-commutativity.
We show that they satisfy some natural information-processing requirements.
We also consider the behavior of our measures under different types of compositions.
arXiv Detail & Related papers (2021-10-20T16:37:10Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Experimental test of the majorization uncertainty relation with mixed
states [6.613272059966484]
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system.
In this work we test the novel majorization uncertainty relations of three incompatible observables using a series of mixed states with adjustable mixing degrees.
arXiv Detail & Related papers (2021-04-07T01:18:32Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox [0.0]
The Einstein-Podolsky-Rosen paradox plays a fundamental role in our understanding of quantum mechanics.
It is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle.
This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering.
arXiv Detail & Related papers (2020-09-17T17:46:44Z) - Experimental demonstration of complementarity relations between quantum
steering criteria [17.30189229503516]
We experimentally verify the complementarity relations between quantum steering criteria by employing two-photon Bell-like states and three Pauli operators.
Our results show that the steering criterion based on skew information of coherence is more stronger in detecting the steerability of quantum states.
arXiv Detail & Related papers (2020-07-22T10:17:02Z) - An uncertainty view on complementarity and a complementarity view on
uncertainty [0.0]
We obtain a complete complementarity relation for quantum uncertainty, classical uncertainty, and predictability.
We show that Brukner-Zeilinger's invariant information quantifies both the wave and particle characters of a quanton.
arXiv Detail & Related papers (2020-07-09T20:40:25Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - An optimal measurement strategy to beat the quantum uncertainty in
correlated system [0.6091702876917281]
Uncertainty principle undermines the precise measurement of incompatible observables.
Entanglement, another unique feature of quantum physics, was found may help to reduce the quantum uncertainty.
arXiv Detail & Related papers (2020-02-23T05:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.