論文の概要: Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning
Based on Gaussian Moments
- arxiv url: http://arxiv.org/abs/2312.01415v1
- Date: Sun, 3 Dec 2023 14:37:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 17:34:34.570643
- Title: Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning
Based on Gaussian Moments
- Title(参考訳): ガウスモーメントに基づく機械学習による熱平均磁気異方性テンソル
- Authors: Viktor Zaverkin, Julia Netz, Fabian Zills, Andreas K\"ohn, and
Johannes K\"astner
- Abstract要約: 分子テンソル量,すなわち磁気異方性テンソルをモデル化する機械学習手法を提案する。
提案手法は0.3-0.4 cm$-1$の精度を達成でき、サンプル外構成に対する優れた一般化能力を有することを示す。
- 参考スコア(独自算出の注目度): 0.6116681488656472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a machine learning method to model molecular tensorial quantities,
namely the magnetic anisotropy tensor, based on the Gaussian-moment
neural-network approach. We demonstrate that the proposed methodology can
achieve an accuracy of 0.3--0.4 cm$^{-1}$ and has excellent generalization
capability for out-of-sample configurations. Moreover, in combination with
machine-learned interatomic potential energies based on Gaussian moments, our
approach can be applied to study the dynamic behavior of magnetic anisotropy
tensors and provide a unique insight into spin-phonon relaxation.
- Abstract(参考訳): 本稿では,ガウス運動神経ネットワークに基づく分子テンソル量,すなわち磁気異方性テンソルをモデル化する機械学習手法を提案する。
提案手法は0.3--0.4 cm$^{-1}$の精度を実現でき,サンプル構成の一般化に優れる。
さらに、ガウスモーメントに基づく機械主導の原子間ポテンシャルエネルギーと組み合わせることで、磁気異方性テンソルの動的挙動の研究とスピンフォノン緩和に関するユニークな洞察を得ることができる。
関連論文リスト
- Truncated Gaussian basis approach for simulating many-body dynamics [0.0]
このアプローチは、フェルミオンガウス状態にまたがる縮小部分空間内で有効ハミルトニアンを構築し、近似固有状態と固有エネルギーを得るために対角化する。
対称性を利用して並列計算を行い、より大きなサイズでシステムをシミュレートすることができる。
クエンチ力学では,時間発展する部分空間の波動関数が時間的ダイナミクスのシミュレーションを促進することが観察される。
論文 参考訳(メタデータ) (2024-10-05T15:47:01Z) - Machine learning force-field models for metallic spin glass [4.090038845129619]
金属スピングラスの動的シミュレーションのためのスケーラブルな機械学習フレームワークを提案する。
Behler-Parrinello型ニューラルネットワークモデルを開発し、電子誘起局所磁場を高精度かつ効率的に予測する。
論文 参考訳(メタデータ) (2023-11-28T17:12:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
常磁性相における量子ダイソン階層モデルのダイナミクスについて検討する。
地磁気場状態の局所励起による初期状態を考慮する。
局所化機構が発見され、励起は任意の時間で初期位置に近づいたままである。
論文 参考訳(メタデータ) (2022-07-14T10:05:20Z) - Machine learning nonequilibrium electron forces for adiabatic spin
dynamics [0.0]
非平衡グリーン関数法から計算した駆動s-dモデルの力を学習するディープラーニングニューラルネットワークを開発した。
本研究では,ニューラルネットワークモデルから予測される力を用いたランダウ・リフシッツ力学シミュレーションにより,電圧駆動型磁壁伝播を正確に再現することを示した。
論文 参考訳(メタデータ) (2021-12-22T18:37:56Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
複数の$d > 2$ スピン状態を持つ「巨大」スピンで表される磁性分子の物理を研究する。
動作の分散状態における出力モードの式を導出する。
キャビティ透過の測定により,クイディットのスピン状態が一意に決定できることがわかった。
論文 参考訳(メタデータ) (2021-09-29T18:00:09Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
マイクロ波超伝導体を用いて作製した薄板ディスクにおけるマヨラナゼロモードの操作について検討した。
平面内磁場印加時に発生する2階位相角モードを解析する。
零モードと励起状態の周波数独立結合により, 断熱相においても振動が持続することを示す。
論文 参考訳(メタデータ) (2021-09-08T11:18:50Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
本稿では, 畳み込みニューラルネットワークを用いて, 正確な散乱s波位相シフトを得られる機械学習モデルの実証を行う。
我々は、ハミルトニアンが物理的に動機づけられた記述子の構築において、いかにして指導原理として機能するかについて議論する。
論文 参考訳(メタデータ) (2021-06-25T17:25:38Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
本稿では,[VO(TPP)](バナジルテトラフェニルポルフィリン酸塩)が量子計算アルゴリズムの実装に適していることを示す。
超微細相互作用によって結合された電子スピン1/2を核スピン7/2に埋め込み、どちらも顕著なコヒーレンスによって特徴づけられる。
論文 参考訳(メタデータ) (2021-03-15T21:38:41Z) - A Dynamical Mean-Field Theory for Learning in Restricted Boltzmann
Machines [2.8021833233819486]
ボルツマンマシンにおける磁化計算のためのメッセージパッシングアルゴリズムを定義する。
安定性基準の下でのアルゴリズムのグローバル収束を証明し,数値シミュレーションとの良好な一致を示す収束率を計算する。
論文 参考訳(メタデータ) (2020-05-04T15:19:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。