論文の概要: Causal flow preserving optimisation of quantum circuits in the
ZX-calculus
- arxiv url: http://arxiv.org/abs/2312.02793v1
- Date: Tue, 5 Dec 2023 14:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 15:35:04.151557
- Title: Causal flow preserving optimisation of quantum circuits in the
ZX-calculus
- Title(参考訳): ZX計算における量子回路の因果流保存最適化
- Authors: Calum Holker
- Abstract要約: 本稿では,非クリフォードゲート数と2ビットゲート数を最小化する最適化アルゴリズムを提案する。
回路をZXダイアグラムに変換することで、回路に戻る前に単純化することができる。
QFT回路を最適化するための特に効果的な戦略も注目されており、非クリフォードゲートに対して正確に1つの2ビットゲートとなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimising quantum circuits to minimise resource usage is crucial,
particularly in the context of near term hardware which is limited by quantum
volume. This paper introduces an optimisation algorithm which aims to minimise
non-Clifford gate count and two-qubit gate count by building on
ZX-calculus-based strategies. By translating a circuit into a ZX-diagram it can
be simplified before being extracted back into a circuit. I assert that
simplifications preserve a graph-theoretic property called causal flow. This
has the advantage that qubit lines are well defined throughout, permitting a
trivial extraction procedure and in turn enabling the calculation of an
individual transformation's impact on the resulting circuit. A general
procedure for a decision strategy is introduced, inspired by an existing
heuristic based method. Both phase teleportation and the neighbour unfusion
rule are generalised. In particular, allowing unfusion of multiple neighbours
is shown to lead to significant improvements in optimisation. When run on a set
of benchmark circuits, the algorithm developed reduces the two-qubit gate count
by an average of 19.6%, beating both the previous best ZX-based strategy
(14.2%) and non-ZX strategy (18.9%). This lays a foundation for multiple
avenues of improvement. A particularly effective strategy for optimising QFT
circuits is also noted, resulting in exactly one two-qubit gate per
non-Clifford gate.
- Abstract(参考訳): リソース使用量を最小化するための量子回路の最適化は、特に量子ボリュームに制限された短期的ハードウェアの文脈において重要である。
本稿では,ZX計算に基づく戦略に基づいて,非クリフォードゲート数と2ビットゲート数を最小化する最適化アルゴリズムを提案する。
回路をZXダイアグラムに変換することで、回路に戻る前に単純化することができる。
私は、単純化は因果フローと呼ばれるグラフ理論的性質を保存すると断言する。
これは、量子ビット線が全体にわたってよく定義され、自明な抽出手順を許容し、その結果の回路に対する個々の変換の影響の計算を可能にするという利点を持つ。
決定戦略の一般的な手順は、既存のヒューリスティックな手法にインスパイアされたものである。
位相テレポーテーションと近隣のアンフュージョンルールの両方が一般化される。
特に、複数の隣人を解離させることは、最適化の大幅な改善につながることが示されている。
ベンチマーク回路で実行すると、アルゴリズムは2量子ビットのゲート数を平均19.6%削減し、以前のベストzxベースの戦略(14.2%)と非zx戦略(18.9%)の両方を上回った。
これは、改善の複数の道の基礎となる。
QFT回路を最適化するための特に効果的な戦略も注目されており、非クリフォードゲートに対して正確に1つの2ビットゲートとなる。
関連論文リスト
- Improving fidelity of multi-qubit gates using hardware-level pulse
parallelization [0.0]
本稿では,ハードウェアレベルでのプリ校正パルスの並列化を,量子ゲートを最適化するための簡単な実装戦略として提示する。
このような並列化はシリアル結合と比較して忠実度とゲート時間の短縮に寄与することを示す。
論文 参考訳(メタデータ) (2023-12-20T19:00:02Z) - Reinforcement Learning Based Quantum Circuit Optimization via ZX-Calculus [0.0]
本稿では,ZX-ダイアグラムのグラフ理論的単純化規則を用いて,量子回路を最適化するための新しい強化学習法を提案する。
そこで本研究では,ZX-Calculusをベースとした最良性能のアルゴリズムと比較し,提案手法の能力を示す。
我々のアプローチは、短期中間スケール範囲(NISQ)における量子アルゴリズムの実装のための貴重なツールとして使われる準備ができている。
論文 参考訳(メタデータ) (2023-12-18T17:59:43Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
我々は、量子回路の最適化にグラフニューラルネットワーク(GNN)オートエンコーダの使い方を初めて提示する。
我々は、量子回路から有向非巡回グラフを構築し、そのグラフを符号化し、その符号化を用いてRL状態を表現する。
我々の手法は、非常に大規模なRL量子回路最適化に向けた最初の現実的な第一歩である。
論文 参考訳(メタデータ) (2023-03-06T16:51:30Z) - Vanishing 2-Qubit Gates with Non-Simplification ZX-Rules [1.0089382889894247]
量子回路はZX-ダイアグラムに変換することができ、ZX-計算の規則を用いて単純化することができる。
最もよく知られた抽出手順は、2量子ゲートの数を劇的に増やすことができる。
ZX-ダイアグラムの局所的な変化が抽出回路の複雑さに大きく影響するという事実を生かしている。
論文 参考訳(メタデータ) (2022-09-14T18:43:21Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
2ビットゲートを並べ替える柔軟性により、コンパイラ最適化により、より深い深さ、ゲート数、忠実度で回路を生成することができる。
多次元量子アーキテクチャ上の任意のコンパイルQAOA回路に対して線形深さを保証する構造的手法を提案する。
全体として、最大1024キュービットの回路を10秒でコンパイルでき、深さ3.8倍のスピードアップ、ゲート数17%の削減、回路ESPの18倍の改善が可能である。
論文 参考訳(メタデータ) (2021-12-12T04:00:45Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
2量子ゲートは量子コンピューティングの重要な構成要素である。
しかし、量子ビット間の不要な相互作用(いわゆる寄生ゲート)は、量子アプリケーションの性能を低下させる。
寄生性2ビットゲート誤差を軽減するための2つのソフトウェア手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T17:37:27Z) - Hybrid quantum-classical circuit simplification with the ZX-calculus [0.0]
この研究は、ハイブリッド回路の中間表現として、ZX-groundと呼ばれる形式的なグラフィカルなZX計算を拡張している。
グラフのサイズを小さくするZX-グラウンドダイアグラムに対して,多数のgFlow保存最適化ルールを導出する。
抽出回路の古典ゲートで実装可能な回路状ZX地上図のセグメントを検出するための一般的な手順を提案する。
論文 参考訳(メタデータ) (2021-09-13T15:45:56Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
正確な数値と摂動解析手法を用いて効率的にゲートパラメータを抽出する方法を示す。
我々は,$i$SWAP, Control-Z, CNOT など,異なる種類のゲートに対する最適操作条件を同定する。
論文 参考訳(メタデータ) (2021-07-06T02:02:54Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
本稿では量子回路マッピングQXXとその機械学習バージョンQXX-MLPを紹介する。
後者は、レイアウトされた回路の深さが小さくなるように最適なQXXパラメータ値を自動的に推論する。
近似を用いてレイアウト法を学習可能な経験的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T05:26:19Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。