論文の概要: The Potential Impact of AI Innovations on U.S. Occupations
- arxiv url: http://arxiv.org/abs/2312.04714v4
- Date: Fri, 26 Jul 2024 13:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 18:31:34.084266
- Title: The Potential Impact of AI Innovations on U.S. Occupations
- Title(参考訳): AIイノベーションが米国占領に与える影響
- Authors: Ali Akbar Septiandri, Marios Constantinides, Daniele Quercia,
- Abstract要約: 私たちはDeep Learning Natural Language Processingを使って、大規模な作業に影響を及ぼす可能性のあるAI特許を特定します。
我々の方法論は、17,879のタスク記述の包括的なデータセットに依存し、AIの潜在的な影響を定量化する。
我々の結果は、いくつかの職業が潜在的に影響を受け、その影響は特定のスキルに複雑に結びついていることを示している。
- 参考スコア(独自算出の注目度): 3.0829845709781725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An occupation is comprised of interconnected tasks, and it is these tasks, not occupations themselves, that are affected by AI. To evaluate how tasks may be impacted, previous approaches utilized manual annotations or coarse-grained matching. Leveraging recent advancements in machine learning, we replace coarse-grained matching with more precise deep learning approaches. Introducing the AI Impact (AII) measure, we employ Deep Learning Natural Language Processing to automatically identify AI patents that may impact various occupational tasks at scale. Our methodology relies on a comprehensive dataset of 17,879 task descriptions and quantifies AI's potential impact through analysis of 24,758 AI patents filed with the United States Patent and Trademark Office (USPTO) between 2015 and 2022. Our results reveal that some occupations will potentially be impacted, and that impact is intricately linked to specific skills. These include not only routine tasks (codified as a series of steps), as previously thought, but also non-routine ones (e.g., diagnosing health conditions, programming computers, and tracking flight routes). However, AI's impact on labour is limited by the fact that some of the occupations affected are augmented rather than replaced (e.g., neurologists, software engineers, air traffic controllers), and the sectors affected are experiencing labour shortages (e.g., IT, Healthcare, Transport).
- Abstract(参考訳): 職業は相互接続されたタスクで構成されており、AIの影響を受けているのは職業自身ではなく、これらのタスクである。
タスクがどのように影響されるかを評価するために、以前のアプローチでは手動アノテーションや粗い粒度のマッチングを使用していた。
機械学習の最近の進歩を活用して、粗い粒度のマッチングをより正確なディープラーニングアプローチに置き換える。
AI Impact(AII)測定の導入では、Deep Learning Natural Language Processingを使用して、さまざまな作業タスクに影響を及ぼす可能性のあるAI特許を自動的に識別する。
われわれの手法は、2015年から2022年にかけて米国特許商標庁(USPTO)に提出された24,758件のAI特許の分析を通じて、17,879件のタスク記述の包括的なデータセットに依存し、AIの潜在的な影響を定量化する。
我々の結果は、いくつかの職業が潜在的に影響を受け、その影響は特定のスキルに複雑に結びついていることを示している。
これらの中には、これまで考えられていたようなルーチンタスク(一連のステップとしてコーディングされた)だけでなく、非ルーチンタスク(例えば、健康状態の診断、コンピュータのプログラミング、飛行経路の追跡など)も含まれている。
しかしながら、AIが労働に与える影響は、影響を受ける職業のいくつかが置き換えられるのではなく、強化されているという事実(例えば、神経学者、ソフトウェアエンジニア、航空交通管制官)と、影響を受けるセクターが労働不足(例えば、IT、ヘルスケア、運輸)によって制限されている。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - How much does AI impact development speed? An enterprise-based randomized controlled trial [8.759453531975668]
複雑なエンタープライズレベルのタスクに開発者が費やす時間に対する3つのAI機能の影響を見積もる。
また、コード関連のアクティビティに1日あたり何時間も費やす開発者は、AIがより速くなるという興味深い効果も見出しました。
論文 参考訳(メタデータ) (2024-10-16T18:31:14Z) - More Questions than Answers? Lessons from Integrating Explainable AI into a Cyber-AI Tool [1.5711133309434766]
ソースコード分類におけるXAIの使用に関する予備的事例研究について述べる。
我々は、AIの専門知識がほとんどない人々によって解釈されると、最先端の正当性説明技法の出力が翻訳で失われることを発見した。
実用的で効果的なXAIにおける非適応的なギャップを概説し、次に、LLM(Large Language Models)のような新興技術が、これらの既存の障害を緩和する方法について触れます。
論文 参考訳(メタデータ) (2024-08-08T20:09:31Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
米国の雇用の3分の1はAIに強く依存している。
この露出は、2019年から2023年までの雇用と賃金の伸びと正の相関関係にある。
論文 参考訳(メタデータ) (2024-07-27T08:14:18Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
我々は、AI技術のこのような新しい機能を使用して、AI測定能力を増強することを提案する。
我々は倫理的問題や関心事に関連する出版物を分類するモデルを訓練する。
私たちは、AIメトリクス、特に信頼できる公正なAIベースのツールや技術開発への彼らの貢献の意味を強調します。
論文 参考訳(メタデータ) (2021-07-26T00:26:12Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。