Quantum thermodynamic uncertainty relation under feedback control
- URL: http://arxiv.org/abs/2312.07407v1
- Date: Tue, 12 Dec 2023 16:27:18 GMT
- Title: Quantum thermodynamic uncertainty relation under feedback control
- Authors: Yoshihiko Hasegawa
- Abstract summary: We explore how quantum feedback, a control technique used to manipulate quantum systems, can enhance the precision.
We find that the presence of feedback control can increase the accuracy of continuous measured systems.
- Score: 1.9580473532948401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The thermodynamic uncertainty relation posits that higher thermodynamic costs
are essential for a system to function with greater precision. Recent
discussions have expanded thermodynamic uncertainty relations beyond classical
non-equilibrium systems, investigating how quantum characteristics can be
utilized to improve precision. In this Letter, we explore how quantum feedback,
a control technique used to manipulate quantum systems, can enhance the
precision. Specifically, we derive a quantum thermodynamic uncertainty relation
for feedback control under jump measurement, which provides the lower bound to
the scaled variance of the number of jumps. We find that the presence of
feedback control can increase the accuracy of continuous measured systems,
which is verified with numerical simulations. Moreover, we derive a quantum
thermodynamic uncertainty relation for feedback control under homodyne
detection.
Related papers
- Precision is not limited by the second law of thermodynamics [0.2094057281590807]
Physical devices operating out of equilibrium are inherently affected by thermal fluctuations, limiting their operational precision.
Our theoretical discovery presents an quantum many-body system that achieves clock precision scaling exponentially with entropy dissipation.
This finding demonstrates that coherent quantum dynamics can surpass the traditional thermodynamic precision limits, potentially guiding the development of future high-precision, low-dissipation quantum devices.
arXiv Detail & Related papers (2024-07-10T18:00:04Z) - Quantum Computer-Based Verification of Quantum Thermodynamic Uncertainty Relation [1.6574413179773757]
Quantum thermodynamic uncertainty relations establish the fundamental trade-off between precision and thermodynamic costs.
We present an approach that utilizes a noisy quantum computer for verifying a general quantum thermodynamic uncertainty relation.
This study highlights the potential and limitations of noisy quantum computers for demonstrating quantum thermodynamic trade-offs.
arXiv Detail & Related papers (2024-02-29T15:55:29Z) - Quantum relative entropy uncertainty relation [0.0]
For classic systems, the fluctuations of a current have a lower bound in terms of the entropy production.
We generalize this idea for quantum systems, where we find a lower bound for the uncertainty of quantum observables given in terms of the quantum relative entropy.
We apply the result to obtain a quantum thermodynamic uncertainty relation in terms of the quantum entropy production, valid for arbitrary dynamics and non-thermal environments.
arXiv Detail & Related papers (2023-09-15T18:58:51Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Criticality-enhanced quantum sensor at finite temperature [44.23814225750129]
We propose a thermodynamic-criticality-enhanced quantum sensing scenario at finite temperature.
It is revealed that the thermodynamic criticality of the Dicke model can significantly improve the sensing precision.
arXiv Detail & Related papers (2021-10-15T02:39:31Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Irreversibility, Loschmidt echo, and thermodynamic uncertainty relation [4.111899441919164]
We consider the thermodynamic uncertainty relation, which states that a higher precision can be achieved at the cost of higher entropy production.
Considering the original and perturbed dynamics, we show that the precision of an arbitrary counting observable in continuous measurement of quantum Markov processes is bounded from below by Loschmidt echo.
arXiv Detail & Related papers (2021-01-18T01:42:11Z) - Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators [6.211723927647019]
We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
arXiv Detail & Related papers (2020-11-30T03:15:27Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.