Bell meets Cavendish: a quantum signature of gravity?
- URL: http://arxiv.org/abs/2312.07458v1
- Date: Tue, 12 Dec 2023 17:35:00 GMT
- Title: Bell meets Cavendish: a quantum signature of gravity?
- Authors: Bin Yan
- Abstract summary: The inclusion of gravitation within the framework of quantum theory remains one of the most prominent open problem in physics.
This article presents a though experiment aimed at discerning the quantum signature of gravity through the lens of macroscopic nonlocality.
- Score: 4.607344782066309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inclusion of gravitation within the framework of quantum theory remains
one of the most prominent open problem in physics. To date, the absence of
empirical evidence hampers conclusions regarding the fundamental nature of
gravity -- whether it adheres to quantum principles or remains a classical
field manifests solely in the macroscopic domain. This article presents a
though experiment aimed at discerning the quantum signature of gravity through
the lens of macroscopic nonlocality. The experiment integrates a standard Bell
test with a classical Cavendish experiment. We illustrate that the measurement
apparatuses employed in a Bell experiment, despite lacking entanglement, defy
classical descriptions; their statistical behaviors resist explanations through
local hidden variable models. Extending this argument to encompass the massive
objects in the Cavendish experiment allows for further disputing classical
models of the gravitational field. Under favorable conditions and in light of
corroborating evidence from the recent loophole-free Bell experiments, the
quantum character of gravity is essentially substantiated.
Related papers
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Gravitationally modulated quantum correlations: Discriminating classical
and quantum models of ultra-compact objects with Bell nonlocality [0.0]
We investigate the relation between quantum nonlocality and gravity at the astrophysical scale.
Considering particle pairs orbiting in the strong gravitational field of ultra-compact objects, we find that the violation of Bell inequality acquires an angular modulation factor.
arXiv Detail & Related papers (2023-04-21T10:31:23Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Quantum Gravity in a Laboratory? [0.0]
It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics.
But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of tabletop'tationally Induced Entanglement (GIE) experiments.
The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide a witness' of the underlying quantum nature of gravity in the non-relativistic limit.
arXiv Detail & Related papers (2022-05-18T15:47:51Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.