COVID-19 Detection Using Slices Processing Techniques and a Modified
Xception Classifier from Computed Tomography Images
- URL: http://arxiv.org/abs/2312.07580v1
- Date: Sun, 10 Dec 2023 19:12:36 GMT
- Title: COVID-19 Detection Using Slices Processing Techniques and a Modified
Xception Classifier from Computed Tomography Images
- Authors: Kenan Morani
- Abstract summary: This paper proposes an enhanced solution for detecting COVID-19 from computed tomography (CT) images.
To decrease model misclassifications, two key steps of image processing were employed.
Xception's architecture and pre-trained weights, the modified model achieved binary classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper extends our previous method for COVID-19 diagnosis, proposing an
enhanced solution for detecting COVID-19 from computed tomography (CT) images.
To decrease model misclassifications, two key steps of image processing were
employed. Firstly, the uppermost and lowermost slices were removed, preserving
sixty percent of each patient's slices. Secondly, all slices underwent manual
cropping to emphasize the lung areas. Subsequently, resized CT scans (224 by
224) were input into an Xception transfer learning model. Leveraging Xception's
architecture and pre-trained weights, the modified model achieved binary
classification. Promising results on the COV19-CT database showcased higher
validation accuracy and macro F1 score at both the slice and patient levels
compared to our previous solution and alternatives on the same dataset.
Related papers
- COVID-19 detection using ViT transformer-based approach from Computed
Tomography Images [0.0]
We introduce a novel approach to enhance the accuracy and efficiency of COVID-19 diagnosis using CT images.
We employ the base ViT Transformer configured for 224x224-sized input images, modifying the output to suit the binary classification task.
Our method implements a systematic patient-level prediction strategy, classifying individual CT slices as COVID-19 or non-COVID.
arXiv Detail & Related papers (2023-10-12T09:37:56Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - COVID-19 Detection Using Transfer Learning Approach from Computed
Tomography Images [0.0]
We propose a transfer learning-based approach using a recently annotated Computed Tomography (CT) image database.
Specifically, we investigate the suitability of a modified Xception model for COVID-19 detection.
Results reveal the method's superiority in accuracy, precision, recall, and macro F1 score on the validation subset.
arXiv Detail & Related papers (2022-07-01T08:22:00Z) - COVID-19 Severity Classification on Chest X-ray Images [0.0]
In this work, we classify covid images based on the severity of the infection.
The ResNet-50 model produced remarkable classification results in terms of accuracy 95%, recall (0.94), and F1-Score (0.92), and precision (0.91)
arXiv Detail & Related papers (2022-05-25T12:01:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis [22.54540093657541]
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019.
In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks.
We proposed in this paper a novel self-supervised pretraining method based on pseudo lesions generation and restoration for COVID-19 diagnosis.
arXiv Detail & Related papers (2021-06-23T11:21:30Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.