論文の概要: On the Prediction of Hardware Security Properties of HLS Designs Using Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2312.07594v1
- Date: Mon, 11 Dec 2023 10:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 12:26:52.795194
- Title: On the Prediction of Hardware Security Properties of HLS Designs Using Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたHLS設計のハードウェアセキュリティ特性の予測について
- Authors: Amalia Artemis Koufopoulou, Athanasios Papadimitriou, Aggelos Pikrakis, Mihalis Psarakis, David Hely,
- Abstract要約: 本稿では,最新のグラフニューラルネットワーク(GNN)を用いたHLS設計におけるハードウェアセキュリティ特性の評価手法を提案する。
我々は,GNNを効率的にトレーニングすることで,障害攻撃に関する重要なハードウェアセキュリティの脅威を予測できることを示す。
提案手法は,高いR二乗スコアを持つHLS設計の欠陥脆弱性メトリクスを予測し,大幅な高速化を実現する。
- 参考スコア(独自算出の注目度): 1.6951945839990796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-level synthesis (HLS) tools have provided significant productivity enhancements to the design flow of digital systems in recent years, resulting in highly-optimized circuits, in terms of area and latency. Given the evolution of hardware attacks, which can render them vulnerable, it is essential to consider security as a significant aspect of the HLS design flow. Yet the need to evaluate a huge number of functionally equivalent de-signs of the HLS design space challenges hardware security evaluation methods (e.g., fault injection - FI campaigns). In this work, we propose an evaluation methodology of hardware security properties of HLS-produced designs using state-of-the-art Graph Neural Network (GNN) approaches that achieves significant speedup and better scalability than typical evaluation methods (such as FI). We demonstrate the proposed methodology on a Double Modular Redundancy (DMR) coun-termeasure applied on an AES SBox implementation, en-hanced by diversifying the redundant modules through HLS directives. The experimental results show that GNNs can be efficiently trained to predict important hardware security met-rics concerning fault attacks (e.g., critical and detection error rates), by using regression. The proposed method predicts the fault vulnerability metrics of the HLS-based designs with high R-squared scores and achieves huge speedup compared to fault injection once the training of the GNN is completed.
- Abstract(参考訳): 高レベル合成(HLS)ツールは、近年、デジタルシステムの設計フローを大幅に向上させ、領域とレイテンシの点で高度に最適化された回路を生み出している。
ハードウェアアタックの進化によって脆弱性が生じることを考えると、セキュリティをHLS設計フローの重要な側面と考えることが不可欠である。
しかし、HLS設計空間の多くの機能的に等価なデサインを評価する必要性は、ハードウェアセキュリティ評価手法(例えば、フォールトインジェクション - FIキャンペーン)に挑戦する。
本研究では,従来の評価手法(FIなど)よりも優れた高速化とスケーラビリティを実現する,最先端のグラフニューラルネットワーク(GNN)アプローチを用いたHLS設計のハードウェアセキュリティ特性の評価手法を提案する。
本稿では, AES SBox実装に適用したDouble Modular Redundancy (DMR) コーウンタロメータについて, HLSディレクティブによる冗長モジュールの多様化を図り,提案手法を実証する。
実験結果から,GNNは回帰を用いて,故障攻撃(臨界・検出誤差率など)に関する重要なハードウェアセキュリティ脅威の予測を効率的に行うことができることがわかった。
提案手法は,高いR二乗スコアを持つHLS設計の欠陥脆弱性メトリクスを予測し,GNNの訓練が完了すると,故障注入と比較して大幅に高速化される。
関連論文リスト
- Scalable and Effective Negative Sample Generation for Hyperedge Prediction [55.9298019975967]
ハイパーエッジ予測は、Webベースのアプリケーションにおける複雑なマルチエンタリティ相互作用を理解するために不可欠である。
従来の手法では、正と負のインスタンスの不均衡により、高品質な負のサンプルを生成するのが困難であることが多い。
本稿では,これらの課題に対処するために拡散モデルを利用するハイパーエッジ予測(SEHP)フレームワークのスケーラブルで効果的な負のサンプル生成について述べる。
論文 参考訳(メタデータ) (2024-11-19T09:16:25Z) - Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
本研究では,機械学習(ML)と深層学習(DL)技術を組み合わせて,ネットワーク侵入検知システム(NIDS)を改善する方法について検討する。
この研究は、CSE-CIC-IDS 2018とLITNET-2020データセットを使用して、MLメソッド(決定木、ランダムフォレスト、XGBoost)とDLモデル(CNN、RNN、DNN)を主要なパフォーマンス指標と比較する。
Decision Treeモデルでは、EPSO(Enhanced Particle Swarm Optimization)を微調整して、ネットワーク違反を効果的に検出する能力を実証した。
論文 参考訳(メタデータ) (2024-08-14T17:11:36Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
現在の緩和戦略は効果はあるものの、敵の攻撃下では弾力性がない。
本稿では,大規模言語モデルのための弾力性ガードレール(RigorLLM)について紹介する。
論文 参考訳(メタデータ) (2024-03-19T07:25:02Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI(NeSy)は、AIシステムの安全なデプロイを保証することを約束している。
ニューラルネットワークとシンボリックコンポーネントを順次トレーニングする既存のパイプラインは、広範なラベリングを必要とする。
新しいアーキテクチャであるNeSyGPTは、生データから象徴的特徴を抽出する視覚言語基盤モデルを微調整する。
論文 参考訳(メタデータ) (2024-02-02T20:33:14Z) - Security and Reliability Evaluation of Countermeasures implemented using High-Level Synthesis [0.0]
サイドチャネル分析(SCA)とフォールトインジェクション(FI)攻撃は強力なハードウェア攻撃である。
HLSツールにセキュリティと信頼性による最適化が欠如しているため、HLSベースの設計では、アルゴリズムの特性と対策が損なわれていないことを検証する必要がある。
論文 参考訳(メタデータ) (2023-12-11T10:13:47Z) - Compute-in-Memory based Neural Network Accelerators for Safety-Critical
Systems: Worst-Case Scenarios and Protections [8.813981342105151]
本稿では,CiM加速器の最悪の性能をデバイス変動の影響で特定する問題について検討する。
本稿では,対向訓練とノイズ注入訓練を効果的に組み合わせた,A-TRICEという新たな最悪の事例認識訓練手法を提案する。
実験の結果,A-TRICEは機器の変量下での最悪のケース精度を最大33%向上することがわかった。
論文 参考訳(メタデータ) (2023-12-11T05:56:00Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices [0.0]
複数のディープニューラルネットワーク(DNN)は、マルウェアのバイナリを検出し分類するように設計されている。
エッジデバイスにこれらのDNNモデルをデプロイして、特にリソース制約のあるシナリオにおいて、リアルタイムな分類を可能にすることは、大規模なIoTシステムにとって不可欠であることが証明されている。
本研究は,マルウェア検出技術の進歩に寄与し,マルウェアの早期検出にサイバーセキュリティ対策を統合することの重要性を強調した。
論文 参考訳(メタデータ) (2023-08-21T16:34:46Z) - Reversible Quantization Index Modulation for Static Deep Neural Network
Watermarking [57.96787187733302]
可逆的データ隠蔽法(RDH)は潜在的な解決策を提供するが、既存のアプローチはユーザビリティ、キャパシティ、忠実性の面で弱点に悩まされている。
量子化指数変調(QIM)を用いたRDHに基づく静的DNN透かし手法を提案する。
提案手法は,透かし埋め込みのための1次元量化器に基づく新しい手法を取り入れたものである。
論文 参考訳(メタデータ) (2023-05-29T04:39:17Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。