論文の概要: Quantum Simulation of Realistic Materials in First Quantization Using Non-local Pseudopotentials
- arxiv url: http://arxiv.org/abs/2312.07654v2
- Date: Thu, 25 Jul 2024 00:09:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 19:46:37.225762
- Title: Quantum Simulation of Realistic Materials in First Quantization Using Non-local Pseudopotentials
- Title(参考訳): 非局所擬ポテンシャルを用いた第一量子化における現実物質の量子シミュレーション
- Authors: Dominic W. Berry, Nicholas C. Rubin, Ahmed O. Elnabawy, Gabriele Ahlers, A. Eugene DePrince III, Joonho Lee, Christian Gogolin, Ryan Babbush,
- Abstract要約: 本稿では、電子構造の量子シミュレーションにおける第1の量子化平面波アルゴリズムの有用性を改良し、実証する。
我々は、最も正確で広く使われている偽ポテンシャルの1つである、Goedecker-Tetter-Hutter(GTH)擬ポテンシャルに焦点をあてる。
GTH擬ポテンシャルの複雑な形式にもかかわらず、量子シミュレーションの全体的なコストを大幅に増大させることなく、関連する演算子のエンコードをブロックすることができる。
- 参考スコア(独自算出の注目度): 1.3166122476354067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper improves and demonstrates the usefulness of the first quantized plane-wave algorithms for the quantum simulation of electronic structure, developed by Babbush et al. and Su et al. We describe the first quantum algorithm for first quantized simulation that accurately includes pseudopotentials. We focus on the Goedecker-Tetter-Hutter (GTH) pseudopotential, which is among the most accurate and widely used norm-conserving pseudopotentials enabling the removal of core electrons from the simulation. The resultant screened nuclear potential regularizes cusps in the electronic wavefunction so that orders of magnitude fewer plane waves are required for a chemically accurate basis. Despite the complicated form of the GTH pseudopotential, we are able to block encode the associated operator without significantly increasing the overall cost of quantum simulation. This is surprising since simulating the nuclear potential is much simpler without pseudopotentials, yet is still the bottleneck. We also generalize prior methods to enable the simulation of materials with non-cubic unit cells, which requires nontrivial modifications. Finally, we combine these techniques to estimate the block-encoding costs for commercially relevant instances of heterogeneous catalysis (e.g. carbon monoxide adsorption on transition metals) and compare to the quantum resources needed to simulate materials in second quantization. We conclude that for computational cells with many particles, first quantization often requires meaningfully less spacetime volume.
- Abstract(参考訳): 本稿では,Babbush et al と Su et al によって開発された電子構造の量子シミュレーションにおける最初の量子化平面波アルゴリズムの有用性について述べる。
我々は、シミュレーションからコア電子を除去できる最も正確で広く使われているノルム保存擬ポテンシャルの1つであるゴデッカー・テッター・ハッター擬ポテンシャル(GTH)に焦点を当てる。
その結果、スクリーニングされた核ポテンシャルは電子波動関数のカスプを正則化し、化学的に正確に平面波のオーダーが桁違いに少ないようにする。
GTH擬ポテンシャルの複雑な形式にもかかわらず、量子シミュレーションの全体的なコストを大幅に増大させることなく、関連する演算子のエンコードをブロックすることができる。
核ポテンシャルのシミュレーションは疑似ポテンシャルなしではずっとシンプルだが、いまだにボトルネックとなっているため、これは驚くべきことである。
また, 従来の手法を一般化して, 非キュービック単位細胞を用いた材料シミュレーションを可能にした。
最後に、これらの手法を組み合わせて、不均一触媒(例えば遷移金属への一酸化炭素吸着)の商業的事例に対するブロックエンコーディングコストを推定し、第2量子化で材料をシミュレートするために必要な量子資源と比較する。
我々は、多くの粒子を持つ計算セルの場合、第一量子化は時空体積を有意に少なくする必要があると結論付けている。
関連論文リスト
- Quantum Simulations of Chemistry in First Quantization with any Basis Set [0.0]
分子や物質のエネルギーの量子計算は、フォールトトレラント量子コンピュータの最も有望な応用の1つである。
それまでの研究は、主に第2量子化におけるシステムのハミルトニアンを表している。
本稿では,任意の基底集合を用いたフォールトトレラント量子コンピュータ上での第一量子化における一般基底状態化学問題の解法を提案する。
これにより、現代の量子化学基底集合を用いた活性空間での計算が可能となる。
論文 参考訳(メタデータ) (2024-08-06T12:40:32Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
本稿では,69個の超伝導量子ビットからなる量子シミュレータについて述べる。
古典的Kosterlitz-Thouless相転移のシグネチャと,Kibble-Zurekスケール予測からの強い偏差を観測する。
本システムは, 対角二量体状態でディジタル的に調製し, 熱化時のエネルギーと渦の輸送を画像化する。
論文 参考訳(メタデータ) (2024-05-27T17:40:39Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
一般ポテンシャルを持つ中性子核シミュレーションのための新しい量子アルゴリズムを開発した。
耐雑音性トレーニング法により、ノイズの存在下でも許容される境界状態エネルギーを提供する。
距離群可換性(DGC)と呼ばれる新しい可換性スキームを導入し、その性能をよく知られたqubit-commutativityスキームと比較する。
論文 参考訳(メタデータ) (2024-02-22T16:33:48Z) - Quantum simulation of battery materials using ionic pseudopotentials [0.0]
疑似ポテンシャルを用いた量子アルゴリズムを導入し、量子コンピュータ上で周期材料をシミュレートするコストを削減する。
平面波に基づくハミルトニアンの第1量子化表現を用いた量子化に基づく量子位相推定アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-02-15T23:02:06Z) - Quantum simulation of exact electron dynamics can be more efficient than
classical mean-field methods [0.4215938932388722]
電子基底状態のシミュレーションのための量子アルゴリズムは、ハートリー・フォックや密度汎関数理論のような一般的な平均場アルゴリズムよりも遅い。
量子化量子アルゴリズムによって、指数的に少ない空間と、基底セットサイズでの関数演算の少ない電子系の正確な時間発展が可能となることを示す。
論文 参考訳(メタデータ) (2023-01-03T17:00:40Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - Krylov variational quantum algorithm for first principles materials
simulations [2.432166214112399]
量子コンピュータ上でグリーン関数を連続分数として取得するアルゴリズムを提案する。
これにより、量子アルゴリズムと第一原理の物質科学シミュレーションを統合することができる。
論文 参考訳(メタデータ) (2021-05-27T16:47:43Z) - Fault-Tolerant Quantum Simulations of Chemistry in First Quantization [0.18374319565577155]
化学のための2つの最初の量子化量子アルゴリズムを実装するのに必要な資源を分析し、最適化する。
我々の量子化アルゴリズムは、最高の第2の量子化アルゴリズムよりも数百万の平面波をシミュレートするために、表面コード時空の体積をはるかに少なくすることを示した。
論文 参考訳(メタデータ) (2021-05-26T18:06:33Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
数値的なアナログシミュレータの動作条件をベンチマークし、要求の少ない実験装置を見出す。
また、離散化と有限サイズ効果により生じるシミュレーションの誤差についてより深く理解する。
論文 参考訳(メタデータ) (2020-11-28T11:23:06Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
本稿では,光学格子中の低温原子に基づく離散2次元量子化学モデルのアナログシミュレータを提案する。
まず、単一フェルミオン原子を用いて、HとH$+$の離散バージョンのような単純なモデルをシミュレートする方法を分析する。
次に、一つのボゾン原子が2つのフェルミオン間の効果的なクーロン反発を媒介し、2次元の水素分子の類似性をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-21T16:00:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。