論文の概要: Using Surprise Index for Competency Assessment in Autonomous
Decision-Making
- arxiv url: http://arxiv.org/abs/2312.09033v2
- Date: Wed, 10 Jan 2024 05:23:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 16:41:04.098298
- Title: Using Surprise Index for Competency Assessment in Autonomous
Decision-Making
- Title(参考訳): 自律意思決定における能力評価のためのサプライズ指標の利用
- Authors: Akash Ratheesh, Ofer Dagan, Nisar R. Ahmed, Jay McMahon
- Abstract要約: 本稿では,自律システムの課題遂行における能力評価の課題について考察する。
マシンラーニングモデルの本質的な不透明さは、ユーザの視点からは、しばしばブラックボックスと表現される)が課題となる。
本研究では,Surprise indexと呼ばれる測定値を用いて,動的システムが期待通りに機能するかどうかを定量化する手法を提案する。
- 参考スコア(独自算出の注目度): 6.786458632155059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of evaluating an autonomous system's
competency in performing a task, particularly when working in dynamic and
uncertain environments. The inherent opacity of machine learning models, from
the perspective of the user, often described as a `black box', poses a
challenge. To overcome this, we propose using a measure called the Surprise
index, which leverages available measurement data to quantify whether the
dynamic system performs as expected. We show that the surprise index can be
computed in closed form for dynamic systems when observed evidence in a
probabilistic model if the joint distribution for that evidence follows a
multivariate Gaussian marginal distribution. We then apply it to a nonlinear
spacecraft maneuver problem, where actions are chosen by a reinforcement
learning agent and show it can indicate how well the trajectory follows the
required orbit.
- Abstract(参考訳): 本稿では,特に動的かつ不確実な環境での作業において,自律システムのタスク遂行能力を評価する問題について考察する。
マシンラーニングモデルの本質的な不透明さは、ユーザの視点からすると、しばしば‘ブラックボックス’と表現されるため、課題となる。
そこで,本研究では,利用可能な測定データを利用して,動的システムが期待通りに動作するかどうかを定量化するサプライズ指標を提案する。
確率モデルにおいて観測されたエビデンスが多変量ガウス周縁分布に従う場合、サプライズ指数は動的系の閉形式で計算できることを示した。
次に、非線形宇宙船の操作問題に適用し、強化学習エージェントによって行動が選択され、軌道が要求される軌道にどれだけうまく従うかを示す。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
我々は,そのダイナミクスを忠実に捉えた状態の表現を学習する問題を研究する。
これは、転送演算子やシステムのジェネレータを学ぶのに役立ちます。
ニューラルネットワークに対する最適化問題として,優れた表現の探索が可能であることを示す。
論文 参考訳(メタデータ) (2023-07-19T11:32:24Z) - Model-based Validation as Probabilistic Inference [37.61747231296097]
障害に対する分散を推定することは、自律システムを検証するための重要なステップである。
逐次システムの故障軌道上の分布をベイズ推定として推定する。
本手法は, 逆振子制御システム, 自律走行シナリオ, 部分的に観測可能な月面着陸機で実証された。
論文 参考訳(メタデータ) (2023-05-17T03:27:36Z) - Pseudo-Hamiltonian system identification [0.0]
一階常微分方程式としてモデル化できるシステムを考える。
モデルが未知の減衰や外乱の影響を受けないデータに基づいて訓練されたとしても、内部力学の分析用語を学習することができる。
論文 参考訳(メタデータ) (2023-05-09T15:22:05Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
本稿では,基礎となる相互作用力学系をモデル化するために,グラフニューラルネットワークを用いた深部状態空間モデルを提案する。
予測分布はマルチモーダルであり、ガウス混合モデルの形をしており、ガウス成分のモーメントは決定論的モーメントマッチングルールによって計算できる。
我々のモーメントマッチングスキームはサンプルのない推論に利用でき、モンテカルロの代替案と比較してより効率的で安定した訓練がもたらされる。
論文 参考訳(メタデータ) (2023-05-02T20:30:23Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。