論文の概要: Let's do the time-warp-attend: Learning topological invariants of
dynamical systems
- arxiv url: http://arxiv.org/abs/2312.09234v1
- Date: Thu, 14 Dec 2023 18:57:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 20:30:03.493523
- Title: Let's do the time-warp-attend: Learning topological invariants of
dynamical systems
- Title(参考訳): 時間-ワープ-アテンド:力学系の位相不変量を学ぶ
- Authors: Noa Moriel, Matthew Ricci, Mor Nitzan
- Abstract要約: 本稿では、動的状態の分類と分岐境界の特徴付けのための、データ駆動型、物理的にインフォームドされたディープラーニングフレームワークを提案する。
超臨界ホップ分岐のパラダイム的ケースに着目し、様々な応用の周期的ダイナミクスをモデル化する。
本手法は, 広範囲な力学系の定性的・長期的挙動に関する貴重な知見を提供し, 大規模物理・生物系における分岐や破滅的な遷移を検出する。
- 参考スコア(独自算出の注目度): 4.465883551216819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical systems across the sciences, from electrical circuits to ecological
networks, undergo qualitative and often catastrophic changes in behavior,
called bifurcations, when their underlying parameters cross a threshold.
Existing methods predict oncoming catastrophes in individual systems but are
primarily time-series-based and struggle both to categorize qualitative
dynamical regimes across diverse systems and to generalize to real data. To
address this challenge, we propose a data-driven, physically-informed
deep-learning framework for classifying dynamical regimes and characterizing
bifurcation boundaries based on the extraction of topologically invariant
features. We focus on the paradigmatic case of the supercritical Hopf
bifurcation, which is used to model periodic dynamics across a wide range of
applications. Our convolutional attention method is trained with data
augmentations that encourage the learning of topological invariants which can
be used to detect bifurcation boundaries in unseen systems and to design models
of biological systems like oscillatory gene regulatory networks. We further
demonstrate our method's use in analyzing real data by recovering distinct
proliferation and differentiation dynamics along pancreatic endocrinogenesis
trajectory in gene expression space based on single-cell data. Our method
provides valuable insights into the qualitative, long-term behavior of a wide
range of dynamical systems, and can detect bifurcations or catastrophic
transitions in large-scale physical and biological systems.
- Abstract(参考訳): 電気回路から生態ネットワークまで、科学全体にわたる力学系は、基礎となるパラメータがしきい値を越えると、定性的かつしばしば破滅的な行動変化が起こる。
既存の方法は、個々のシステムで起こる災害を予測するが、主に時系列に基づいており、様々なシステムにまたがる定性的な動的体制を分類し、実際のデータに一般化するのに苦労する。
この課題に対処するため,データ駆動型物理インフォームド深層学習フレームワークを提案し,トポロジ的不変な特徴の抽出に基づいて動的状態の分類と分岐境界のキャラクタリゼーションを行う。
超臨界ホップ分岐のパラダイム的ケースに焦点をあて、幅広い応用の周期的ダイナミクスをモデル化するために使用される。
コンボリューショナルアテンション法は, 観測不能なシステムにおける分岐境界の検出や, 振動性遺伝子制御ネットワークなどの生物学的システムのモデルの設計に使用できるトポロジ的不変量の学習を促進するデータ強化を用いて訓練される。
さらに,単細胞データに基づく遺伝子発現空間における膵内分泌過程の異なる増殖および分化動態を回復させることにより,実データ解析における本手法の利用を実証する。
本手法は,幅広い力学系の定性的・長期的挙動に関する貴重な知見を提供し,大規模物理・生物系の分岐や破滅的な遷移を検出する。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - TS-MoCo: Time-Series Momentum Contrast for Self-Supervised Physiological
Representation Learning [8.129782272731397]
ラベルを必要とせずに様々な生理領域から表現を学習するために,モーメントコントラストを持つ自己教師型学習に依存した新しい符号化フレームワークを提案する。
我々の自己教師型学習アプローチは、下流の分類タスクで活用できる差別的特徴を実際に学習できることを示します。
論文 参考訳(メタデータ) (2023-06-10T21:17:42Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Detecting chaos in lineage-trees: A deep learning approach [1.536989504296526]
本稿では,合成軌道上でのディープラーニングモデルの訓練に基づいて,データから最大のリアプノフ指数を推定する新しい手法について述べる。
本手法は, 樹状データ, 生物環境におけるユビキタストポロジ, 特に細胞や生物の系統の動態を解析できるという点で特有である。
論文 参考訳(メタデータ) (2021-06-08T11:11:52Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。