論文の概要: Joint Alignment of Multivariate Quasi-Periodic Functional Data Using
Deep Learning
- arxiv url: http://arxiv.org/abs/2312.09422v1
- Date: Tue, 14 Nov 2023 10:09:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 14:23:49.670897
- Title: Joint Alignment of Multivariate Quasi-Periodic Functional Data Using
Deep Learning
- Title(参考訳): 深層学習を用いた多変量準周期関数データの結合アライメント
- Authors: Vi Thanh Pham (1), Jonas Bille Nielsen (2), Klaus Fuglsang Kofoed (2
and 3), J{\o}rgen Tobias K\"uhl (4), Andreas Kryger Jensen (1) ((1) Section
of Biostatistics, Department of Public Health, Faculty of Health and Medical
Sciences, University of Copenhagen, (2) Department of Cardiology and
Radiology, Copenhagen University Hospital, (3) Department of Clinical
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen,
(4) Department of Cardiology, Zealand University Hospital)
- Abstract要約: 深層ニューラルネットワークを用いた多変量準周期関数の結合アライメント法を提案する。
提案するニューラルネットワークは,単位単純度変換に基づく出力の特別な活性化を利用する。
本手法は,12個の心電図記録から得られた2つのシミュレーションデータセットと1つの実例を用いて実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The joint alignment of multivariate functional data plays an important role
in various fields such as signal processing, neuroscience and medicine,
including the statistical analysis of data from wearable devices. Traditional
methods often ignore the phase variability and instead focus on the variability
in the observed amplitude. We present a novel method for joint alignment of
multivariate quasi-periodic functions using deep neural networks, decomposing,
but retaining all the information in the data by preserving both phase and
amplitude variability. Our proposed neural network uses a special activation of
the output that builds on the unit simplex transformation, and we utilize a
loss function based on the Fisher-Rao metric to train our model. Furthermore,
our method is unsupervised and can provide an optimal common template function
as well as subject-specific templates. We demonstrate our method on two
simulated datasets and one real example, comprising data from 12-lead 10s
electrocardiogram recordings.
- Abstract(参考訳): 多変量関数データの結合アライメントは、信号処理、神経科学、医学などの様々な分野において重要な役割を担い、ウェアラブルデバイスからのデータの統計解析も含む。
伝統的な方法はしばしば位相変動を無視し、観測された振幅の変動に焦点をあてる。
本稿では,深層ニューラルネットワークを用いた多変量準周期関数の結合アライメント手法を提案する。
提案するニューラルネットワークは,単位単純度変換に基づく出力の特別な活性化を利用し,フィッシャー・ラオ計量に基づく損失関数を用いてモデルを訓練する。
さらに,提案手法は教師なしであり,主題別テンプレートと同様に最適な共通テンプレート機能を提供できる。
12誘導10s心電図記録データを含む2つのシミュレーションデータセットと1つの実例について本手法を実証する。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Towards Precision Healthcare: Robust Fusion of Time Series and Image Data [8.579651833717763]
本稿では,データの種類毎に2つのエンコーダを用いて,視覚情報と時間情報の両方において複雑なパターンをモデル化する手法を提案する。
また、不均衡なデータセットに対処し、不確実性損失関数を使用し、改善した結果を得る。
本手法は,臨床応用におけるマルチモーダルディープラーニングの改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-24T11:18:13Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - FATE: Feature-Agnostic Transformer-based Encoder for learning
generalized embedding spaces in flow cytometry data [4.550634499956126]
我々は,潜在的な特徴集合の交わりに入力空間を拘束することなく,様々な特徴を持つデータを有効に活用することを目的としている。
特徴量の整合を必要とせずに直接データを処理できる新しいアーキテクチャを提案する。
本モデルの利点は, 急性骨髄性白血病の血流データにおける癌細胞の自動検出である。
論文 参考訳(メタデータ) (2023-11-06T18:06:38Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Multivariate Wasserstein Functional Connectivity for Autism Screening [82.68524566142271]
我々は,代表時系列を使わずに,興味のある地域を直接比較することを提案する。
自閉症スクリーニングタスクにおけるWasserstein機能接続性の評価を行った。
論文 参考訳(メタデータ) (2022-09-23T16:23:05Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。