論文の概要: Demonstration of fault-tolerant Steane quantum error correction
- arxiv url: http://arxiv.org/abs/2312.09745v1
- Date: Fri, 15 Dec 2023 12:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 15:50:45.141402
- Title: Demonstration of fault-tolerant Steane quantum error correction
- Title(参考訳): 耐障害性ステイン量子誤差補正の実証
- Authors: Lukas Postler, Friederike Butt, Ivan Pogorelov, Christian D.
Marciniak, Sascha Heu{\ss}en, Rainer Blatt, Philipp Schindler, Manuel
Rispler, Markus M\"uller, Thomas Monz
- Abstract要約: 本研究では,複数ラウンドのフォールトトレラントSteane QECをトラップイオン量子コンピュータ上に実装する。
各種QEC符号を用い, フラグ量子ビットを用いた従来の実験手法と比較した。
- 参考スコア(独自算出の注目度): 0.7174990929661688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Encoding information redundantly using quantum error-correcting (QEC) codes
allows one to overcome the inherent sensitivity to noise in quantum computers
to ultimately achieve large-scale quantum computation. The Steane QEC method
involves preparing an auxiliary logical qubit of the same QEC code used for the
data register. The data and auxiliary registers are then coupled with a logical
CNOT gate, enabling a measurement of the auxiliary register to reveal the error
syndrome. This study presents the implementation of multiple rounds of
fault-tolerant Steane QEC on a trapped-ion quantum computer. Various QEC codes
are employed, and the results are compared to a previous experimental approach
utilizing flag qubits. Our experimental findings show improved logical
fidelities for Steane QEC. This establishes experimental Steane QEC as a
competitive paradigm for fault-tolerant quantum computing.
- Abstract(参考訳): 量子誤り訂正(QEC)符号を用いて冗長に情報を符号化することで、量子コンピュータのノイズに対する固有の感度を克服し、最終的に大規模な量子計算を達成できる。
Steane QEC法は、データレジスタに使用するのと同じQECコードの補助論理キュービットを作成する。
データと補助レジスタは論理cnotゲートと結合され、補助レジスタの測定によりエラーシンドロームが明らかにされる。
本研究では,複数ラウンドのフォールトトレラントSteane QECをトラップイオン量子コンピュータ上に実装する。
各種QEC符号を用い, フラグ量子ビットを用いた従来の実験手法と比較した。
実験の結果,Steane QECの論理的忠実度は改善した。
これにより、フォールトトレラント量子コンピューティングの競争パラダイムとして実験的なSteane QECが確立される。
関連論文リスト
- Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
量子タナー符号が逆雑音の単ショット量子誤り補正(QEC)を促進することを証明した。
本稿では,複数ラウンドのQECにおける誤りを抑えるために,並列復号アルゴリズムを各ラウンドで一定時間実行するのに十分であることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:00:01Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Beating the break-even point with a discrete-variable-encoded logical
qubit [11.225411597366886]
量子誤り訂正(QEC)は、大きなヒルベルト空間の冗長性を利用して、雑音から論理量子ビットを保護することを目的としている。
ほとんどのQEC符号では、論理量子ビットはいくつかの離散変数(例えば光子数)で符号化される。
我々の研究は、ハードウェア効率の良い離散変数QEC符号の信頼性のある量子情報プロセッサへの可能性を示す。
論文 参考訳(メタデータ) (2022-11-17T03:38:55Z) - Quantum computation capability verification protocol for NISQ devices
with dihedral coset problem [0.4061135251278187]
本稿では,一方のパーティ(検証者)が他方のパーティ(証明者)装置の量子計算能力を検証するための,一方のパーティ(検証者)に対して,一方の方向の量子チャネルを介して対話的プロトコルを提案する。
我々はIBM Qデバイスの1つで4量子ビット実験を行う。
論文 参考訳(メタデータ) (2022-02-14T19:00:58Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Quantum information processing with bosonic qubits in circuit QED [1.2891210250935146]
ボソニック符号を用いた量子誤り訂正の理論と実装の最近の展開を概観する。
我々は,cQEDデバイスを用いたフォールトトレラントな量子情報処理の実現に向けた進展を報告する。
論文 参考訳(メタデータ) (2020-08-31T10:27:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。