論文の概要: Verifying Fault-Tolerance of Quantum Error Correction Codes
- arxiv url: http://arxiv.org/abs/2501.14380v2
- Date: Tue, 04 Feb 2025 00:11:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:54:26.479898
- Title: Verifying Fault-Tolerance of Quantum Error Correction Codes
- Title(参考訳): 量子誤り訂正符号の耐故障性検証
- Authors: Kean Chen, Yuhao Liu, Wang Fang, Jennifer Paykin, Xin-Chuan Wu, Albert Schmitz, Steve Zdancewic, Gushu Li,
- Abstract要約: 大規模フォールトトレラント量子コンピューティングは、ノイズを抑制するために量子エラー訂正符号(QECC)に依存している。
本稿では,量子プログラム言語におけるQECC実装のフォールトトレランスを定式化する。
- 参考スコア(独自算出の注目度): 7.796308340803447
- License:
- Abstract: Quantum computers have advanced rapidly in qubit count and gate fidelity. However, large-scale fault-tolerant quantum computing still relies on quantum error correction code (QECC) to suppress noise. Manually or experimentally verifying the fault-tolerance property of complex QECC implementation is impractical due to the vast error combinations. This paper formalizes the fault-tolerance of QECC implementations within the language of quantum programs. By incorporating the techniques of quantum symbolic execution, we provide an automatic verification tool for quantum fault-tolerance. We evaluate and demonstrate the effectiveness of our tool on a universal set of logical operations across different QECCs.
- Abstract(参考訳): 量子コンピュータは量子ビット数とゲート忠実度が急速に進歩している。
しかし、大規模なフォールトトレラント量子コンピューティングは、ノイズを抑制するために量子誤り訂正符号(QECC)に依存している。
複雑なQECC実装のフォールトトレランス特性を手動または実験的に検証することは、膨大なエラーの組み合わせのために現実的ではない。
本稿では,量子プログラム言語におけるQECC実装のフォールトトレランスを定式化する。
量子シンボル実行の技法を取り入れることで、量子フォールトトレランスの自動検証ツールを提供する。
我々は,異なるQECC間の論理演算の普遍的集合に対するツールの有効性を評価し,実演する。
関連論文リスト
- Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
この観点の原稿は、ボソニックなコード、特にグリッド状態のエンコーディングが、スケーラブルなフォールトトレラント量子コンピューティングへの経路を提供する方法を記述している。
ボソニックモードのヒルベルト空間を利用することで、量子誤差補正は単一の物理単位レベルで動作することができる。
論理クロックレートがMHzのゲートベースの量子コンピューティングプロセッサにおいて,フォールトトレランスを達成するための最短経路である,と我々は主張する。
論文 参考訳(メタデータ) (2024-09-09T17:20:06Z) - Demonstration of fault-tolerant Steane quantum error correction [0.7174990929661688]
本研究では,複数ラウンドのフォールトトレラントSteane QECをトラップイオン量子コンピュータ上に実装する。
各種QEC符号を用い, フラグ量子ビットを用いた従来の実験手法と比較した。
論文 参考訳(メタデータ) (2023-12-15T12:32:49Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Automatic Implementation and Evaluation of Error-Correcting Codes for
Quantum Computing: An Open-Source Framework for Quantum Error Correction [2.1801327670218855]
実際の量子コンピュータは、計算中にエラーを引き起こす頻繁なノイズ効果に悩まされている。
量子エラー訂正コードは、対応するエラーを識別し修正する手段を提供することで、この問題に対処する。
本稿では, あるアプリケーションに対してエラー訂正コードを自動的に適用し, その後に自動ノイズ対応量子回路シミュレーションを行うオープンソースフレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-13T19:12:22Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
ブラインド量子計算(Blind Quantum Computation、BQC)は、クライアントが望まれる量子計算を実装するためにリモート量子サーバをレンタルするプロトコルである。
本稿では,量子誤り訂正符号を用いたフォールトトレラントブラインド量子計算プロトコルを提案する。
論文 参考訳(メタデータ) (2023-01-05T08:52:55Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
計算状態から高エネルギー状態への量子情報の漏洩は、量子誤り訂正(QEC)の追求における大きな課題である。
本稿では,Sycamore量子プロセッサ上で,各サイクルの全てのキュービットから漏れが除去される距離3曲面符号と距離21ビットフリップ符号の実行を実演する。
本報告では, 論理状態を符号化したデータキュービットにおける定常リーク集団の10倍の減少と, デバイス全体の平均リーク人口の1/10〜3ドルの減少を報告した。
論文 参考訳(メタデータ) (2022-11-09T07:54:35Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Quantum information processing with bosonic qubits in circuit QED [1.2891210250935146]
ボソニック符号を用いた量子誤り訂正の理論と実装の最近の展開を概観する。
我々は,cQEDデバイスを用いたフォールトトレラントな量子情報処理の実現に向けた進展を報告する。
論文 参考訳(メタデータ) (2020-08-31T10:27:06Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
論文 参考訳(メタデータ) (2020-04-24T17:58:10Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。