論文の概要: Agent Assessment of Others Through the Lens of Self
- arxiv url: http://arxiv.org/abs/2312.11357v1
- Date: Mon, 18 Dec 2023 17:15:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 19:20:12.535619
- Title: Agent Assessment of Others Through the Lens of Self
- Title(参考訳): 自己レンズによる他者のエージェント評価
- Authors: Jasmine A. Berry
- Abstract要約: この論文は、自律エージェントの自己の内省能力の質は、他のエージェントの質の高い人間的な理解を反映するのに不可欠であると主張している。
結局のところ、ビジョンは単に計算する機械ではなく、内省し、共感し、理解する実体である。
- 参考スコア(独自算出の注目度): 1.223779595809275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The maturation of cognition, from introspection to understanding others, has
long been a hallmark of human development. This position paper posits that for
AI systems to truly emulate or approach human-like interactions, especially
within multifaceted environments populated with diverse agents, they must first
achieve an in-depth and nuanced understanding of self. Drawing parallels with
the human developmental trajectory from self-awareness to mentalizing (also
called theory of mind), the paper argues that the quality of an autonomous
agent's introspective capabilities of self are crucial in mirroring quality
human-like understandings of other agents. While counterarguments emphasize
practicality, computational efficiency, and ethical concerns, this position
proposes a development approach, blending algorithmic considerations of
self-referential processing. Ultimately, the vision set forth is not merely of
machines that compute but of entities that introspect, empathize, and
understand, harmonizing with the complex compositions of human cognition.
- Abstract(参考訳): 認知の成熟は、内観から他人を理解することまで、長い間人間の発達の目印であった。
本稿では、aiシステムが真に人間のようなインタラクションをエミュレートし、あるいはアプローチするためには、特に多様なエージェントが住む多面的な環境において、まず、自己の深い、ニュアンス的な理解を達成する必要があると仮定する。
自己認識からメンタライジング(心の理論とも呼ばれる)に至る人間の発達の軌跡と並行して、自律エージェントの自己に関する内省的能力の質は、他のエージェントの人間的な理解を反映させる上で重要であると論じている。
反論は実用性、計算効率、倫理的懸念を強調する一方で、この立場は自己参照処理のアルゴリズム的考察を融合した開発アプローチを提案する。
究極的には、ビジョンは単に計算する機械ではなく、人間の認識の複雑な構成を内省し、共感し、理解し、調和する実体である。
関連論文リスト
- Learning mental states estimation through self-observation: a developmental synergy between intentions and beliefs representations in a deep-learning model of Theory of Mind [0.35154948148425685]
心の理論(りょうがく、英: Theory of Mind、ToM)とは、信念、意図、精神状態などを他人に関連付ける能力である。
我々は,低レベル精神状態を予測する学習と,高レベル精神状態に寄与する学習との間に発達的な相乗効果を示す。
我々は,人間の社会的認知発達の理解に,我々の計算的アプローチが役立つことを示唆する。
論文 参考訳(メタデータ) (2024-07-25T13:15:25Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory [8.439724621886779]
LLM(Large Language Models)の開発は、人間中心の人工知能(AGI)に希望の光を与えている。
共感は人間にとって重要な感情的属性として機能し、人間中心のAGIにおいて不定の役割を果たす。
本稿では,社会学における自己表現理論にインスパイアされた革新的なエンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2023-12-14T07:38:12Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Conscious AI [6.061244362532694]
人工知能の最近の進歩は、分類タスクの人間規模のスピードと精度を達成しました。
現在のシステムは、パターンを認識して分類する必要はない。
AIが直感や共感を必要とするより複雑なタスクに進むためには、メタシンキング、創造性、共感などの能力が人間の自己認識や意識に似ています。
論文 参考訳(メタデータ) (2021-05-12T15:53:44Z) - Deep Interpretable Models of Theory of Mind For Human-Agent Teaming [0.7734726150561086]
我々は、他の観測対象の意図をモデル化するための解釈可能なモジュラー・ニューラル・フレームワークを開発する。
Minecraftの検索および救助タスクで、人間の参加者のデータに関する実験を行い、アプローチの有効性を実証します。
論文 参考訳(メタデータ) (2021-04-07T06:18:58Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。