論文の概要: First qualitative observations on deep learning vision model YOLO and
DETR for automated driving in Austria
- arxiv url: http://arxiv.org/abs/2312.12314v1
- Date: Tue, 19 Dec 2023 16:39:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 14:50:16.243952
- Title: First qualitative observations on deep learning vision model YOLO and
DETR for automated driving in Austria
- Title(参考訳): オーストリアにおける自動運転のための深層学習視覚モデルYOLOとDETRの質的研究
- Authors: Stefan Schoder
- Abstract要約: 本研究は,You Only Look Once (YOLO) のような単段および二段2次元物体検出アルゴリズムの適用性について検討する。
この研究は、オーストリアの道路状況と交通シナリオによって引き起こされる固有の課題に焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the application of single and two-stage 2D-object
detection algorithms like You Only Look Once (YOLO), Real-Time DEtection
TRansformer (RT-DETR) algorithm for automated object detection to enhance road
safety for autonomous driving on Austrian roads. The YOLO algorithm is a
state-of-the-art real-time object detection system known for its efficiency and
accuracy. In the context of driving, its potential to rapidly identify and
track objects is crucial for advanced driver assistance systems (ADAS) and
autonomous vehicles. The research focuses on the unique challenges posed by the
road conditions and traffic scenarios in Austria. The country's diverse
landscape, varying weather conditions, and specific traffic regulations
necessitate a tailored approach for reliable object detection. The study
utilizes a selective dataset comprising images and videos captured on Austrian
roads, encompassing urban, rural, and alpine environments.
- Abstract(参考訳): 本研究では, 自動物体検出のためのYou Only Look Once (YOLO), Real-Time Detection TRansformer (RT-DETR) アルゴリズムなど, 単段および二段2次元物体検出アルゴリズムの適用について検討した。
YOLOアルゴリズムは、その効率と精度で知られている最先端のリアルタイム物体検出システムである。
運転の文脈では、オブジェクトを迅速に識別し追跡する能力は、advanced driver assistance system(adas)とautonomous vehiclesにとって重要である。
この研究はオーストリアの道路事情と交通シナリオがもたらす固有の課題に焦点を当てている。
国の多様な景観、様々な気象条件、交通規制は、信頼できる物体検出のための調整されたアプローチを必要とする。
この研究は、オーストリアの道路で撮影された画像とビデオからなる選択的データセットを利用しており、都市、農村、アルプスの環境を含んでいる。
関連論文リスト
- RainSD: Rain Style Diversification Module for Image Synthesis
Enhancement using Feature-Level Style Distribution [5.500457283114346]
本稿では,実際の道路データセットBDD100Kから発生するセンサブロックを用いた道路合成データセットを提案する。
このデータセットを用いて、自律運転のための多様なマルチタスクネットワークの劣化を評価し、分析した。
深層ニューラルネットワークを用いた自動運転車の認識システムの性能劣化傾向を深く分析した。
論文 参考訳(メタデータ) (2023-12-31T11:30:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Language-Guided 3D Object Detection in Point Cloud for Autonomous
Driving [91.91552963872596]
我々は,LiDARグラウンディングと呼ばれるマルチモーダルな視覚的グラウンドニングタスクを提案する。
言語特徴を持つLiDARベースの物体検出器を共同で学習し、検出器から直接対象領域を予測する。
私たちの研究は、LiDARベースの接地作業に関する深い洞察を提供しており、自動運転コミュニティにとって有望な方向性を示すものと期待しています。
論文 参考訳(メタデータ) (2023-05-25T06:22:10Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
ダッシュカムビデオを用いた自動運転車の脅威検出機構を提案する。
オブジェクトを識別するためのYOLO,高度な車線検出アルゴリズム,カメラからの距離を測定するマルチレグレッションモデルという,4つの主要なコンポーネントがある。
提案した脅威検出モデル(TDM)の最終的な精度は82.65%である。
論文 参考訳(メタデータ) (2022-09-06T12:01:07Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
未知の物体を検出する新しいパイプラインを提案する。
我々は,最先端の美術品検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを利用する。
論文 参考訳(メタデータ) (2022-05-03T10:58:41Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - Object Detection Under Rainy Conditions for Autonomous Vehicles: A
Review of State-of-the-Art and Emerging Techniques [5.33024001730262]
本稿では,自律走行車における物体検出能力に対する降雨条件の影響を緩和するための最先端技術に関するチュートリアルを提案する。
我々のゴールは、澄んだ雨条件下で収集した視覚データを用いて訓練・試験された物体検出手法の性能を調査し、分析することである。
論文 参考訳(メタデータ) (2020-06-30T02:05:10Z) - Improved YOLOv3 Object Classification in Intelligent Transportation
System [29.002873450422083]
高速道路における車両・運転者・人の検出・分類を実現するために, YOLOv3に基づくアルゴリズムを提案する。
モデルは優れた性能を持ち、道路遮断、異なる姿勢、極端な照明に頑丈である。
論文 参考訳(メタデータ) (2020-04-08T11:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。