SLP-Net:An efficient lightweight network for segmentation of skin
lesions
- URL: http://arxiv.org/abs/2312.12789v2
- Date: Thu, 4 Jan 2024 09:34:08 GMT
- Title: SLP-Net:An efficient lightweight network for segmentation of skin
lesions
- Authors: Bo Yang, Hong Peng, Chenggang Guo, Xiaohui Luo, Jun Wang, Xianzhong
Long
- Abstract summary: SLP-Net is an ultra-lightweight skin lesion segmentation network based on the spiking neural P(SNP) systems type mechanism.
We design a lightweight multi-scale feature extractor without the usual encoder-decoder structure.
Experiments at the ISIC2018 challenge demonstrate that the proposed model has the highest Acc and DSC among the state-of-the-art methods.
- Score: 9.812172372998358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt treatment for melanoma is crucial. To assist physicians in identifying
lesion areas precisely in a quick manner, we propose a novel skin lesion
segmentation technique namely SLP-Net, an ultra-lightweight segmentation
network based on the spiking neural P(SNP) systems type mechanism. Most
existing convolutional neural networks achieve high segmentation accuracy while
neglecting the high hardware cost. SLP-Net, on the contrary, has a very small
number of parameters and a high computation speed. We design a lightweight
multi-scale feature extractor without the usual encoder-decoder structure.
Rather than a decoder, a feature adaptation module is designed to replace it
and implement multi-scale information decoding. Experiments at the ISIC2018
challenge demonstrate that the proposed model has the highest Acc and DSC among
the state-of-the-art methods, while experiments on the PH2 dataset also
demonstrate a favorable generalization ability. Finally, we compare the
computational complexity as well as the computational speed of the models in
experiments, where SLP-Net has the highest overall superiority
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
This paper builds a spiking neural network (SNN) based on the leaky integrate-and-fire (LIF) neuron model for HSI classification tasks.
SNN-SWMR requires a time step reduction of about 84%, training time, and testing time reduction of about 63% and 70% at the same accuracy.
arXiv Detail & Related papers (2024-09-18T00:51:01Z) - CSWin-UNet: Transformer UNet with Cross-Shaped Windows for Medical Image Segmentation [22.645013853519]
CSWin-UNet is a novel U-shaped segmentation method that incorporates the CSWin self-attention mechanism into the UNet.
Our empirical evaluations on diverse datasets, including synapse multi-organ CT, cardiac MRI, and skin lesions, demonstrate that CSWin-UNet maintains low model complexity while delivering high segmentation accuracy.
arXiv Detail & Related papers (2024-07-25T14:25:17Z) - Patch Network for medical image Segmentation [10.893993462772409]
We present a Patch Network (PNet) that incorporates the Swin Transformer notion into a convolutional neural network.
Our PNet achieves SOTA performance in both speed and accuracy.
arXiv Detail & Related papers (2023-02-23T06:29:31Z) - OpenHLS: High-Level Synthesis for Low-Latency Deep Neural Networks for
Experimental Science [0.6571063542099524]
We present an open source, lightweight, compiler framework for translating high-level representations of deep neural networks to low-level representations.
We show OpenHLS is able to produce an implementation of the network with a throughput 4.8 $mu$s/sample, which is approximately a 4$times$ improvement over the existing implementation.
arXiv Detail & Related papers (2023-02-13T23:25:55Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
We investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms.
ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size.
These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization.
arXiv Detail & Related papers (2022-03-07T18:59:03Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.