論文の概要: Effective Causal Discovery under Identifiable Heteroscedastic Noise Model
- arxiv url: http://arxiv.org/abs/2312.12844v2
- Date: Sun, 9 Jun 2024 17:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 04:18:44.203309
- Title: Effective Causal Discovery under Identifiable Heteroscedastic Noise Model
- Title(参考訳): ヘテロセダス性雑音モデルによる効果的な因果発見
- Authors: Naiyu Yin, Tian Gao, Yue Yu, Qiang Ji,
- Abstract要約: 因果DAG学習は、最近精度と効率の両面で有望な性能を達成した。
本稿では,変数間のノイズ分散の変動を考慮したDAG学習のための新しい定式化を提案する。
次に、最適化の難しさに対処する効果的な2相反復DAG学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 45.98718860540588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of both accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the issue of heteroscedastic noise, we introduce relaxed and implementable sufficient conditions, proving the identifiability of a general class of SEM subject to these conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning that accounts for the variation in noise variance across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and to learn a causal DAG from data with heteroscedastic variable noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.
- Abstract(参考訳): DAG(Directed Acyclic Graphs)で表される構造因果関係のキャプチャは、さまざまなAI分野における基本的なタスクである。
継続的最適化フレームワークによる因果的DAG学習は、最近、正確性と効率の両面で有望なパフォーマンスを達成した。
しかし、ほとんどの手法はホモスセダスティックノイズの強い仮定をしており、例えば外因性ノイズは変数、観測、あるいはその両方に等しくばらつきがある。
実際のデータのノイズは、通常、異なるデータ収集プロセスによってもたらされるバイアスのため、両方の前提に反する。
異方性雑音の問題に対処するために,これらの条件下での一般SEMの識別可能性を示す,緩和された,実装可能な十分な条件を導入する。
同定可能な一般SEMに基づいて,変数間のノイズ分散と観測値の変動を考慮したDAG学習のための新しい定式化を提案する。
そこで我々は,最適化の難しさに対処する効果的な2相反復DAG学習アルゴリズムを提案し,不連続変動雑音を持つデータから因果DAGを学習する。
本研究では,合成データと実データの両方に対する最先端手法に対する提案手法の実証的な効果を示す。
関連論文リスト
- The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing [9.551225697705199]
本稿では,不均一なデータに対するグラディエント・ディキセント(SGD)の暗黙バイアスについて検討し,その暗黙バイアスがモデル学習を不変解へと導くことを示す。
具体的には、各環境において、信号が(i)全環境間で共有される低ランク不変部分と(ii)環境依存のスプリアス成分とを含む多環境低ランク行列センシング問題について理論的に検討する。
重要な洞察は、明示的な正規化を伴わずに各環境で大きなステップサイズの大バッチSGDを逐次使用するだけで、不均一性に起因する振動は、モデル学習の急激なシグナルを確実に阻止することができることである。
論文 参考訳(メタデータ) (2024-03-03T07:38:24Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
学生の$t$-distributionは、より小さなサンプルサイズと極端な値で、全体の分布形態を著しく変えることなく、サンプル変数をサンプリングすることの堅牢さで知られている。
我々の経験的評価は、我々の推定器はより堅牢で、合成ベンチマークと実ベンチマークの総合的な性能が向上していることを示している。
論文 参考訳(メタデータ) (2023-12-15T02:26:35Z) - Heteroscedastic Causal Structure Learning [2.566492438263125]
ガウス雑音下での不連続因果構造学習問題に取り組む。
因果的機構の正常性を利用して、有効な因果的順序付けを復元することができる。
その結果,単純な因果構造学習アルゴリズムHOST (Heteroscedastic causal STructure Learning) が得られた。
論文 参考訳(メタデータ) (2023-07-16T07:53:16Z) - Understanding Pathologies of Deep Heteroskedastic Regression [25.509884677111344]
ヘテロスケダスティックモデルは各データポイントの平均ノイズと残留ノイズの両方を予測する。
極端に言えば、これらのモデルはすべてのトレーニングデータを完璧に適合させ、残音を完全に排除する。
他方では、一定で非形式的な平均を予測しながら残音を過度に補正する。
中間地盤の欠如を観察し, モデル正則化強度に依存する相転移を示唆した。
論文 参考訳(メタデータ) (2023-06-29T06:31:27Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
重症度予測は患者の生活改善に非常に重要である。
初期データと中間データの間の深刻な不均衡問題は、依然として大きな課題となっている。
データ拡張は、この問題を解決するための直感的な方法です。
DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T05:44:53Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
本稿では,不特定変分因果解法(DICD)を提案する。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
論文 参考訳(メタデータ) (2022-05-31T09:29:07Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
この仮定から逸脱すると、実際により良い統計的推定結果が得られることが示される。
特に、最適な雑音分布は、データと異なり、また、別の家族からさえも異なる。
論文 参考訳(メタデータ) (2022-03-02T13:59:20Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
構造方程式モデル(SEM)は、有向非巡回グラフ(DAG)を介して表される因果関係を推論する効果的な枠組みである。
近年の進歩により、観測データからDAGの有効最大点推定が可能となった。
線形ガウス SEM を特徴付ける DAG 上の分布を推定するための変分フレームワークである BCD Nets を提案する。
論文 参考訳(メタデータ) (2021-12-06T03:35:21Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Adaptive Multi-View ICA: Estimation of noise levels for optimal
inference [65.94843987207445]
Adaptive MultiView ICA (AVICA) はノイズの多いICAモデルであり、各ビューは共有された独立したソースと付加的なノイズの線形混合である。
AVICAは、その明示的なMMSE推定器により、他のICA法よりも優れたソース推定値が得られる。
実脳磁図(MEG)データでは,分解がサンプリングノイズに対する感度が低く,ノイズ分散推定が生物学的に妥当であることを示す。
論文 参考訳(メタデータ) (2021-02-22T13:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。