論文の概要: LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery
- arxiv url: http://arxiv.org/abs/2410.11759v4
- Date: Wed, 12 Feb 2025 15:07:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 15:57:39.231418
- Title: LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery
- Title(参考訳): LoSAM:グローバル因果発見のための混合機構と一般雑音を用いた付加雑音モデルの局所探索
- Authors: Sujai Hiremath, Promit Ghosal, Kyra Gan,
- Abstract要約: 本稿では,ANMにおける一意なDAG学習のための付加雑音モデルLoSAMの局所探索を提案する。
一貫性とランタイムを証明し、スケーラビリティとサンプル効率を確保します。
合成および実世界のデータに基づいてLoSAMをテストし、すべての混合機構設定における最先端性能を実証した。
- 参考スコア(独自算出の注目度): 2.4305626489408465
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Inferring causal relationships from observational data is crucial when experiments are costly or infeasible. Additive noise models (ANMs) enable unique directed acyclic graph (DAG) identification, but existing ANM methods often rely on restrictive assumptions on the data generating process, limiting their applicability to real-world settings. We propose local search in additive noise models, LoSAM, a topological ordering method for learning a unique DAG in ANMs with mixed causal mechanisms and general noise distributions. We introduce new causal substructures and criteria for identifying roots and leaves, enabling efficient top-down learning. We prove asymptotic consistency and polynomial runtime, ensuring scalability and sample efficiency. We test LoSAM on synthetic and real-world data, demonstrating state-of-the-art performance across all mixed mechanism settings.
- Abstract(参考訳): 観測データから因果関係を推定することは、実験が費用がかかるか不可能である場合に重要である。
付加ノイズモデル (ANMs) はDAG識別を可能にするが、既存のANM法はデータ生成プロセスの制約的な仮定に依存し、実際の設定に適用性を制限する。
本稿では,加法雑音モデルにおける局所探索法であるLoSAMを提案する。
我々は,根と葉を同定するための新しい因果構造と基準を導入し,効率的なトップダウン学習を可能にした。
漸近的な一貫性と多項式ランタイムを証明し、スケーラビリティとサンプル効率を確保する。
合成および実世界のデータに基づいてLoSAMをテストし、すべての混合機構設定における最先端性能を実証した。
関連論文リスト
- Spatial Reasoning with Denoising Models [49.83744014336816]
本稿では,連続変数の集合に対する推論を行うためのフレームワークを提案する。
はじめに,デノナイジングネットワーク自体によって生成順序を予測できることを実証した。
論文 参考訳(メタデータ) (2025-02-28T14:08:30Z) - Robust Learning under Hybrid Noise [24.36707245704713]
本稿では,データリカバリの観点からハイブリッドノイズに対処するため,新たな統合学習フレームワーク"Feature and Label Recovery"(FLR)を提案する。
論文 参考訳(メタデータ) (2024-07-04T16:13:25Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
適応型ラッソを用いてスパースレグレッションを利用して自動的にPDEを識別するARGOSフレームワークARGOS-RALの拡張を提案する。
各種ノイズレベルおよびサンプルサイズの下での標準PDEの同定におけるARGOS-RALの性能を厳格に評価した。
以上の結果から,ARGOS-ALはデータから基礎となるPDEを効果的かつ確実に同定し,ほとんどの場合において逐次しきい値リッジ回帰法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-04-25T09:23:03Z) - SAM-DiffSR: Structure-Modulated Diffusion Model for Image
Super-Resolution [49.205865715776106]
本稿では,SAM-DiffSRモデルを提案する。このモデルでは,ノイズをサンプリングする過程において,SAMからの微細な構造情報を利用することで,推論時に追加の計算コストを伴わずに画像品質を向上させることができる。
DIV2Kデータセット上でPSNRの最大値で既存の拡散法を0.74dB以上越えることにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-27T01:57:02Z) - Effective Causal Discovery under Identifiable Heteroscedastic Noise Model [45.98718860540588]
因果DAG学習は、最近精度と効率の両面で有望な性能を達成した。
本稿では,変数間のノイズ分散の変動を考慮したDAG学習のための新しい定式化を提案する。
次に、最適化の難しさに対処する効果的な2相反復DAG学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-20T08:51:58Z) - Order-based Structure Learning with Normalizing Flows [7.972479571606131]
観測データの因果構造を推定することは、グラフサイズと超指数的にスケールする難しい探索問題である。
既存の手法では、連続緩和を用いてこの問題を計算的に取り扱えるようにしているが、しばしばデータ生成過程を加法雑音モデル(ANM)に制限する。
自己回帰正規化フローを用いてこれらの仮定を緩和するフレームワークである,正規化フローを用いた秩序に基づく構造学習(OSLow)を提案する。
論文 参考訳(メタデータ) (2023-08-14T22:17:33Z) - Causal Discovery with Score Matching on Additive Models with Arbitrary
Noise [37.13308785728276]
因果発見法は、構造識別可能性を保証するために必要な仮定のセットによって本質的に制約される。
本稿では,雑音項のガウス性に反するエッジ反転のリスクを解析し,この仮説の下での推論の欠点を示す。
本稿では,一般的な雑音分布を持つ付加非線形モデルに基づいて生成されたデータから,因果グラフ内の変数の位相的順序付けを推定する新しい手法を提案する。
これは、最小限の仮定と、合成データに基づいて実験的にベンチマークされた技術性能の状態を持つ因果探索アルゴリズムであるNoGAMに繋がる。
論文 参考訳(メタデータ) (2023-04-06T17:50:46Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Online Incremental Non-Gaussian Inference for SLAM Using Normalizing
Flows [34.297172076718354]
NF-iSAMはニューラルネットワークの表現力を利用して正規化フローをモデル化し、高非線形および非ガウス因子グラフの結合後部を正確に近似することができる。
我々はNF-iSAMの性能を実証し,iSAM2 (Gaussian) や mm-iSAM (non-Gaussian) といった最先端のアルゴリズムと比較した。
論文 参考訳(メタデータ) (2021-10-02T21:07:05Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix
Recovery [8.581512812219737]
本稿では,ノイズや外周波で劣化した観測結果から低ランク行列を復元する新しい枠組みを提案する。
平方根のラッソにインスパイアされたこの新しい定式化は、ノイズレベルに関する事前の知識を必要としない。
正規化パラメータの1つの普遍的な選択は、(事前未知の)雑音レベルに比例した再構成誤差を達成するのに十分であることを示す。
論文 参考訳(メタデータ) (2021-06-17T02:28:11Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
論文 参考訳(メタデータ) (2021-06-12T19:57:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Data-driven learning of robust nonlocal physics from high-fidelity
synthetic data [3.9181541460605116]
非局所モデルに対する主要な課題は、それらを第一原理から導き出す解析的複雑さであり、しばしばそれらの使用は後続法として正当化される。
本研究では、データから非局所モデルを取り出し、これらの課題を回避し、結果のモデルフォームに対するデータ駆動的正当化を提供する。
論文 参考訳(メタデータ) (2020-05-17T22:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。