論文の概要: Gappy local conformal auto-encoders for heterogeneous data fusion: in
praise of rigidity
- arxiv url: http://arxiv.org/abs/2312.13155v1
- Date: Wed, 20 Dec 2023 16:18:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 14:52:40.809983
- Title: Gappy local conformal auto-encoders for heterogeneous data fusion: in
praise of rigidity
- Title(参考訳): 不均一データ融合のためのgappy local conformal auto-encoder:in praise of rigidity
- Authors: Erez Peterfreund, Iryna Burak, Ofir Lindenbaum, Jim Gimlett, Felix
Dietrich, Ronald R. Coifman, Ioannis G. Kevrekidis
- Abstract要約: 本稿では,このタスクのためのマルチオートエンコーダニューラルネットワークアーキテクチャの形で,エンドツーエンドの計算パイプラインを提案する。
パイプラインへの入力はいくつかの部分的な観測の集合であり、その結果は全世界的に一貫した潜在空間となり、すべての測定を調和させる(剛性化、融合)。
簡単な2次元データセットから始まり、Wi-Fiのローカライゼーション問題へと進む。
- 参考スコア(独自算出の注目度): 6.1152340690876095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fusing measurements from multiple, heterogeneous, partial sources, observing
a common object or process, poses challenges due to the increasing availability
of numbers and types of sensors. In this work we propose, implement and
validate an end-to-end computational pipeline in the form of a
multiple-auto-encoder neural network architecture for this task. The inputs to
the pipeline are several sets of partial observations, and the result is a
globally consistent latent space, harmonizing (rigidifying, fusing) all
measurements. The key enabler is the availability of multiple slightly
perturbed measurements of each instance:, local measurement, "bursts", that
allows us to estimate the local distortion induced by each instrument. We
demonstrate the approach in a sequence of examples, starting with simple
two-dimensional data sets and proceeding to a Wi-Fi localization problem and to
the solution of a "dynamical puzzle" arising in spatio-temporal observations of
the solutions of Partial Differential Equations.
- Abstract(参考訳): 複数の、異質な部分的な源からの計測を融合させ、共通の物体やプロセスを観察し、数やセンサーの種類の増加による課題を提起する。
本稿では,このタスクのためのマルチオートエンコーダニューラルネットワークアーキテクチャとして,エンドツーエンドの計算パイプラインを提案し,実装し,検証する。
パイプラインへの入力はいくつかの部分的な観測であり、その結果はグローバルに一貫した潜在空間となり、すべての測定値に調和(安定化、融合)する。
鍵となるイネーブルは、各インスタンスの複数のわずかな摂動測定(ローカル測定、"バースト")が利用可能であり、各機器によって引き起こされる局所歪みを推定することができる。
簡単な2次元データセットから始まり、Wi-Fiローカライゼーション問題に進み、部分微分方程式の解の時空間的な時空間的観測から生じる「力学パズル」の解へと進む。
関連論文リスト
- Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - D2NO: Efficient Handling of Heterogeneous Input Function Spaces with
Distributed Deep Neural Operators [7.119066725173193]
異種性を示す入力関数を扱うための新しい分散手法を提案する。
中央ニューラルネットワークは、すべての出力関数間で共有情報を処理するために使用される。
ニューラルネットワークが連続非線形作用素の普遍近似であることを示す。
論文 参考訳(メタデータ) (2023-10-29T03:29:59Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Convergent autoencoder approximation of low bending and low distortion
manifold embeddings [5.5711773076846365]
オートエンコーダのエンコーダコンポーネントを学習するための新しい正規化を提案し,解析する。
損失関数は、入力多様体上の点対に対する異なるサンプリング戦略とモンテカルロ積分を通じて計算される。
我々の主定理は、埋め込み写像の損失汎函数をサンプリング依存損失汎函数の$Gamma$-極限として定義する。
論文 参考訳(メタデータ) (2022-08-22T10:31:31Z) - DPCN++: Differentiable Phase Correlation Network for Versatile Pose
Registration [18.60311260250232]
本稿では,世界規模で収束し,対応のない位相相関解法を提案する。
DCPN++は,2次元鳥眼視画像,3次元物体・シーン計測,医用画像など,入力モードが異なる幅広い登録タスクで評価される。
論文 参考訳(メタデータ) (2022-06-12T10:00:34Z) - Push--Pull with Device Sampling [8.344476599818826]
複数のエージェントが協力して、基礎となる通信グラフを交換することで、ローカル関数の平均を最小化する分散最適化問題を考察する。
ネットワーク全体の勾配追跡と分散低減を併用したアルゴリズムを提案する。
理論解析により,局所目的関数が強凸である場合,アルゴリズムは線形に収束することを示した。
論文 参考訳(メタデータ) (2022-06-08T18:18:18Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
本稿では,Fed-ExDNN(Federated Exemplar-based Deep Neural Network)を用いて,異なるエッジデバイス上での多変量時系列データの異常検出を行う。
ExDNNとFed-ExDNNは、最先端の異常検出アルゴリズムやフェデレーション学習技術より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-09T05:06:58Z) - Federated Learning Based on Dynamic Regularization [43.137064459520886]
本稿では,ニューラルネットワークモデルを分散学習するための新しいフェデレーション学習手法を提案する。
サーバは、各ラウンドでランダムに選択されたデバイスのサブセット間の協力を編成する。
論文 参考訳(メタデータ) (2021-11-08T03:58:28Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。