論文の概要: HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for
Root Cause Analysis with GPT-assisted Mitigation Suggestion
- arxiv url: http://arxiv.org/abs/2312.13530v1
- Date: Thu, 21 Dec 2023 02:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 16:01:49.014202
- Title: HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for
Root Cause Analysis with GPT-assisted Mitigation Suggestion
- Title(参考訳): HW-V2W-Map:GPT支援緩和提案によるルート原因解析のための弱みマッピングフレームワークのハードウェア脆弱性
- Authors: Yu-Zheng Lin, Muntasir Mamun, Muhtasim Alam Chowdhury, Shuyu Cai,
Mingyu Zhu, Banafsheh Saber Latibari, Kevin Immanuel Gubbi, Najmeh Nazari
Bavarsad, Arjun Caputo, Avesta Sasan, Houman Homayoun, Setareh Rafatirad,
Pratik Satam, Soheil Salehi
- Abstract要約: HW-V2W-Map Frameworkは、ハードウェア脆弱性とIoT(Internet of Things)セキュリティに焦点を当てた機械学習(ML)フレームワークである。
私たちが提案したアーキテクチャには,オントロジーを更新するプロセスを自動化する,オントロジー駆動のストーリテリングフレームワークが組み込まれています。
提案手法は,GPT (Generative Pre-trained Transformer) Large Language Models (LLMs) を用いて緩和提案を行った。
- 参考スコア(独自算出の注目度): 3.847218857469107
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The escalating complexity of modern computing frameworks has resulted in a
surge in the cybersecurity vulnerabilities reported to the National
Vulnerability Database (NVD) by practitioners. Despite the fact that the
stature of NVD is one of the most significant databases for the latest insights
into vulnerabilities, extracting meaningful trends from such a large amount of
unstructured data is still challenging without the application of suitable
technological methodologies. Previous efforts have mostly concentrated on
software vulnerabilities; however, a holistic strategy incorporates approaches
for mitigating vulnerabilities, score prediction, and a knowledge-generating
system that may extract relevant insights from the Common Weakness Enumeration
(CWE) and Common Vulnerability Exchange (CVE) databases is notably absent. As
the number of hardware attacks on Internet of Things (IoT) devices continues to
rapidly increase, we present the Hardware Vulnerability to Weakness Mapping
(HW-V2W-Map) Framework, which is a Machine Learning (ML) framework focusing on
hardware vulnerabilities and IoT security. The architecture that we have
proposed incorporates an Ontology-driven Storytelling framework, which
automates the process of updating the ontology in order to recognize patterns
and evolution of vulnerabilities over time and provides approaches for
mitigating the vulnerabilities. The repercussions of vulnerabilities can be
mitigated as a result of this, and conversely, future exposures can be
predicted and prevented. Furthermore, our proposed framework utilized
Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to
provide mitigation suggestions.
- Abstract(参考訳): 現代のコンピューティングフレームワークのエスカレートする複雑さは、実践者によってNational Vulnerability Database (NVD)に報告されたサイバーセキュリティの脆弱性の急増につながった。
NVDの安定性が脆弱性に関する最新の知見の最も重要なデータベースであるにもかかわらず、そのような大量の非構造化データから有意義な傾向を抽出することは、適切な技術方法論を適用することなく依然として困難である。
これまでの取り組みは主にソフトウェア脆弱性に集中してきたが、全体的な戦略には脆弱性の緩和、スコア予測、CWE(Common Weakness Enumeration)とCVE(Common Vulnerability Exchange)データベースから関連する洞察を抽出する知識生成システムが含まれる。
モノのインターネット(IoT)デバイスに対するハードウェア攻撃の数が急速に増加する中、ハードウェア脆弱性とIoTセキュリティに焦点を当てた機械学習(ML)フレームワークであるHW-V2W-Map(Hardware Vulnerability to Weakness Mapping)フレームワークが紹介される。
このフレームワークは、オントロジーを更新するプロセスを自動化するもので、時間をかけて脆弱性のパターンと進化を認識し、脆弱性を緩和するためのアプローチを提供します。
この結果、脆弱性の再発を軽減でき、逆に将来の暴露を予測して防止することができる。
さらに,提案手法では,GPT (Generative Pre-trained Transformer) Large Language Models (LLMs) を用いて緩和提案を行った。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Predicting IoT Device Vulnerability Fix Times with Survival and Failure Time Models [1.934036432603761]
多くのIoTデバイスは、最小限のセキュリティ対策で市場にリリースされており、デバイス毎の平均25の脆弱性を抱えることが多い。
我々は、脆弱性のあるIoTデバイスが修正やパッチを受けるのに要する時間を予測する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-05T12:26:01Z) - Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
本研究では機械学習(ML)技術を活用した効果的なマルウェア検出戦略の必要性に対処する。
本研究の目的は、個々のマシンの特定の状況に基づいて、マルウェアの脆弱性を正確に予測する高度なMLモデルを開発することである。
論文 参考訳(メタデータ) (2025-01-05T10:04:58Z) - In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [104.94706600050557]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Enhancing Pre-Trained Language Models for Vulnerability Detection via Semantic-Preserving Data Augmentation [4.374800396968465]
本稿では,脆弱性検出のための事前学習言語モデルの性能向上を目的としたデータ拡張手法を提案する。
一連の代表的なコード事前訓練モデルの微調整に当社のデータセットを組み込むことで、最大10.1%の精度向上と23.6%のF1増加を達成することができる。
論文 参考訳(メタデータ) (2024-09-30T21:44:05Z) - On Security Weaknesses and Vulnerabilities in Deep Learning Systems [32.14068820256729]
具体的には、ディープラーニング(DL)フレームワークについて検討し、DLシステムにおける脆弱性に関する最初の体系的な研究を行う。
各種データベースの脆弱性パターンを探索する2ストリームデータ分析フレームワークを提案する。
我々は,脆弱性のパターンと修正の課題をよりよく理解するために,3,049個のDL脆弱性を大規模に検討した。
論文 参考訳(メタデータ) (2024-06-12T23:04:13Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
本研究では,グラフ解析手法と改良型グラフ注意畳み込みニューラルネットワーク(GAT)モデルを提案する。
制御フローグラフを分析して、脆弱性の修正を目的とした依存性のアップグレードから発生するアプリケーションの変更をプロファイルします。
結果は、コード脆弱性のリレーショナルダイナミクスに関する微妙な洞察を提供する上で、強化されたGATモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-03-08T02:01:47Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
本稿では,Transformer-based learning framework(V2W-BERT)を提案する。
自然言語処理,リンク予測,転送学習のアイデアを用いることで,従来の手法よりも優れる。
ランダムに分割されたデータの予測精度は最大97%、一時分割されたデータの予測精度は最大94%です。
論文 参考訳(メタデータ) (2021-02-23T05:16:57Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。