論文の概要: Statistical learning theory and Occam's razor: The argument from
empirical risk minimization
- arxiv url: http://arxiv.org/abs/2312.13842v1
- Date: Thu, 21 Dec 2023 13:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 14:55:29.922486
- Title: Statistical learning theory and Occam's razor: The argument from
empirical risk minimization
- Title(参考訳): 統計的学習理論とoccamのカミソリ--経験的リスク最小化からの議論
- Authors: Tom F. Sterkenburg
- Abstract要約: この論文は、経験的リスク最小化の方法に対する統計的学習理論の中央数学的学習保証に基づいて構築された、有資格な手段終末とモデル相対的正当化論を綴っている。
- 参考スコア(独自算出の注目度): 1.6317061277457001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the epistemic justification for a simplicity preference
in inductive inference that may be obtained from the machine learning framework
of statistical learning theory. Uniting elements from both earlier arguments
suggesting and rejecting such a justification, the paper spells out a qualified
means-ends and model-relative justificatory argument, built on statistical
learning theory's central mathematical learning guarantee for the method of
empirical risk minimization.
- Abstract(参考訳): 本稿では,統計学習理論の機械学習の枠組みから得られる帰納的推論における単純性選好の認識論的正当性について考察する。
この論文は、そのような正当化を示唆し否定する以前の議論の要素をまとめ、統計的学習理論の実証的リスク最小化法に対する中央数学的学習保証に基づいて構築された、有資格な手段終末とモデル相対的正当化論を綴った。
関連論文リスト
- A Theory of Machine Learning [0.0]
本稿では,この理論が統計学と計算学習理論の共通仮定に挑戦していることを示す。
本稿では, 自然言語処理とマクロ経済学のケーススタディについて, 新理論の観点から概説する。
論文 参考訳(メタデータ) (2024-07-07T23:57:10Z) - Machine Learning of the Prime Distribution [49.84018914962972]
素数の可学習性に関するヤン・フイ・ヘの実験的な観察を説明する理論的論証を提供する。
我々はまた、ErdHos-Kac法が現在の機械学習技術によって発見される可能性は極めて低いと仮定している。
論文 参考訳(メタデータ) (2024-03-19T09:47:54Z) - Inference of Abstraction for a Unified Account of Reasoning and Learning [0.0]
我々は、推論と学習の統一的な説明のために、単純な確率的推論の理論を与える。
我々は、形式論理におけるその満足度の観点から、データがどのように象徴的な知識を引き起こすかをモデル化する。
論文 参考訳(メタデータ) (2024-02-14T09:43:35Z) - Advancing Abductive Reasoning in Knowledge Graphs through Complex Logical Hypothesis Generation [43.26412690886471]
本稿では,知識グラフを用いた帰納的論理的推論への最初のステップとして,複雑な論理的仮説生成の課題を紹介する。
教師付き学習された生成モデルは、参照仮説に構造的に近い論理仮説を生成することができる。
本稿では, 知識グラフによる強化学習(Reinforcement Learning from Knowledge Graph, RLF-KG)手法を提案する。
論文 参考訳(メタデータ) (2023-12-25T08:06:20Z) - A Simple Generative Model of Logical Reasoning and Statistical Learning [0.6853165736531939]
統計的学習と論理的推論は、AIの2つの主要な分野であり、人間のようなマシンインテリジェンスに統一されることが期待されている。
本稿では、論理的推論と統計的学習の単純なベイズモデルを提案する。
我々は、形式論理におけるその満足度の観点から、データがどのように象徴的知識を引き起こすかをモデル化する。
論文 参考訳(メタデータ) (2023-05-18T16:34:51Z) - The role of prior information and computational power in Machine
Learning [0.0]
本稿では,事前情報と計算能力を用いて学習問題を解決する方法について論じる。
我々は高い計算能力を利用することは高い性能の利点があると主張している。
論文 参考訳(メタデータ) (2022-10-31T20:39:53Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
提案手法は,従来の低階の促進をコントラスト学習の枠組みに効果的に組み込む新しい確率的グラフィカルモデルを構築する。
我々の仮説は、同じインスタンスクラスに属するすべてのサンプルが、小さな次元の同じ部分空間上にあることを明示的に要求する。
実証的な証拠は、提案アルゴリズムが複数のベンチマークにおける最先端のアプローチを明らかに上回っていることを示している。
論文 参考訳(メタデータ) (2021-08-05T15:58:25Z) - Constrained Learning with Non-Convex Losses [119.8736858597118]
学習は現代の情報処理の中核技術になっているが、バイアス、安全でない、偏見のあるソリューションにつながるという証拠はたくさんある。
論文 参考訳(メタデータ) (2021-03-08T23:10:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。