論文の概要: Experimental demonstration of magnetic tunnel junction-based computational random-access memory
- arxiv url: http://arxiv.org/abs/2312.14264v2
- Date: Thu, 4 Apr 2024 18:44:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 18:35:30.382438
- Title: Experimental demonstration of magnetic tunnel junction-based computational random-access memory
- Title(参考訳): 磁気トンネル接合を用いたランダムアクセスメモリの実証実験
- Authors: Yang Lv, Brandon R. Zink, Robert P. Bloom, Hüsrev Cılasun, Pravin Khanal, Salonik Resch, Zamshed Chowdhury, Ali Habiboglu, Weigang Wang, Sachin S. Sapatnekar, Ulya Karpuzcu, Jian-Ping Wang,
- Abstract要約: 「計算ランダムアクセスメモリ(CRAM)が登場し、この基本的限界に対処している」
CRAMは、データがメモリを離れることなく、メモリセルを直接使用するロジック操作を実行する。
本研究では,磁気トンネル接合(MTJ)に基づくCRAMアレイ実験を行った。
- 参考スコア(独自算出の注目度): 4.640906373267124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence, because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called "computational random-access memory (CRAM)" has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there lacks an experimental demonstration and study of CRAM to evaluate its computation accuracy, which is a realistic and application-critical metrics for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations as well as 2-, 3-, and 5-input logic operations are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of modeling has been developed to characterize the accuracy of CRAM computation. Further analysis of scalar addition, multiplication, and matrix multiplication shows promising results. These results are then applied to a complete application: a neural network based handwritten digit classifier, as an example to show the connection between the application performance and further MTJ development. The classifier achieved almost-perfect classification accuracy, with reasonable projections of future MTJ development. With the confirmation of MTJ-based CRAM's accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence.
- Abstract(参考訳): 従来のコンピューティングパラダイムは、ロジックとメモリモジュール間の一定のデータ転送によって電力とエネルギーが消費されるため、新興アプリケーション、特にマシンインテリジェンスに対する要求が急速に増大するのに苦労している。
計算ランダムアクセスメモリ (Computational random- Access memory, CRAM) と呼ばれる新しいパラダイムが、この基本的な制限に対処するために登場した。
CRAMは、データがメモリを離れることなく、メモリセルを直接使用するロジック操作を実行する。
従来のCRAMと先進的なアプリケーションの両方において,CRAMのエネルギと性能の利点は,従来の数値研究によってよく確立されている。
しかし、CRAMの計算精度を評価するための実験的な実証や研究は欠けており、これはその技術的実現可能性と競争性のための現実的でアプリケーションクリティカルな指標である。
本研究では,磁気トンネル接合(MTJ)に基づくCRAMアレイ実験を行った。
まず, 2-, 3-, 5-インプット論理演算と同様に, 基本的なメモリ演算について検討する。
次に、2つの異なる設計の1ビットフル加算器を示す。
実験結果に基づいて,CRAM計算の精度を特徴付けるためのモデリングスイートが開発された。
スカラー加算、乗算、行列乗算のさらなる解析は有望な結果を示している。
これらの結果は、完全なアプリケーションに適用される: ニューラルネットワークベースの手書き桁分類器。
分類器はほぼ完璧な分類精度を達成し、将来のMTJ開発を合理的に予測した。
MTJベースのCRAMの精度の確認により、この技術が機械知能の電力およびエネルギー需要の応用に大きな影響を与えるという強いケースがある。
関連論文リスト
- A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI [14.486320458474536]
ニューロシンボリック人工知能(AI)は、ノイズや一般化されたパターンから学習し、論理的推論を行い、解釈可能な推論を提供する。
現在のハードウェアは、'neuro'と'symbolic'コンポーネント間の動的リソース割り当てを必要とするアプリケーションに対応するのに苦労している。
ニューロシンボリックAIの基本処理要素として強誘電体電荷領域計算メモリ(CiM)アレイを提案する。
論文 参考訳(メタデータ) (2024-10-20T05:52:03Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - CMOS-based Single-Cycle In-Memory XOR/XNOR [0.0]
シングルサイクルインメモリXOR/XNOR演算のためのCMOSベースのハードウェアトポロジを提案する。
私たちの設計では、既存のCMOS互換ソリューションと比較して、レイテンシが少なくとも2倍改善されています。
この全CMOS設計は、大規模技術ノードにおけるCiM XOR/XNORの実践的実装の道を開くものである。
論文 参考訳(メタデータ) (2023-10-26T21:43:01Z) - Evaluation of STT-MRAM as a Scratchpad for Training in ML Accelerators [9.877596714655096]
深層ニューラルネットワーク(DNN)のトレーニングは非常にメモリ集約的なプロセスである。
Spin-Transfer-Torque MRAM (STT-MRAM) は、加速器の訓練に望ましいいくつかの特性を提供する。
MRAMはシステムレベルのエネルギーを最大15-22倍改善することを示す。
論文 参考訳(メタデータ) (2023-08-03T20:36:48Z) - DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference [4.718504401468233]
PIMソリューションは、まだ成熟していない新しいメモリ技術か、パフォーマンス上のオーバーヘッドとスケーラビリティの問題のあるビットシリアル計算に依存している。
本稿では,従来のメモリを用いてビット並列計算を行い,複数のワードラインのアクティベーションを利用する,SRAM内デジタル乗算器を提案する。
次に、この乗算器を利用したアーキテクチャであるDAISMを導入し、SOTAと比較して最大2桁高い面積効率を実現し、競争エネルギー効率を向上する。
論文 参考訳(メタデータ) (2023-05-12T10:58:21Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - In-memory Implementation of On-chip Trainable and Scalable ANN for AI/ML
Applications [0.0]
本稿では,人工知能(AI)と機械学習(ML)アプリケーションを実現するための,ANNのためのインメモリコンピューティングアーキテクチャを提案する。
我々の新しいオンチップトレーニングとインメモリアーキテクチャは、プリチャージサイクル当たりの配列の複数行を同時にアクセスすることで、エネルギーコストを削減し、スループットを向上させる。
提案したアーキテクチャはIRISデータセットでトレーニングされ、以前の分類器と比較してMAC当たりのエネルギー効率が4,6倍に向上した。
論文 参考訳(メタデータ) (2020-05-19T15:36:39Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Parallelising the Queries in Bucket Brigade Quantum RAM [69.43216268165402]
量子アルゴリズムは、しばしばデータベースのような方法で格納された情報にアクセスするために量子RAM(QRAM)を使用する。
本稿では,Clifford+Tゲートの並列性を利用して,効率的なクエリ時間を大幅に短縮する手法を提案する。
理論的には、フォールトトレラントバケットの量子RAMクエリは古典的なRAMの速度とほぼ一致する。
論文 参考訳(メタデータ) (2020-02-21T14:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。