Data needs and challenges for quantum dot devices automation
- URL: http://arxiv.org/abs/2312.14322v3
- Date: Tue, 05 Nov 2024 21:18:45 GMT
- Title: Data needs and challenges for quantum dot devices automation
- Authors: Justyna P. Zwolak, Jacob M. Taylor, Reed W. Andrews, Jared Benson, Garnett W. Bryant, Donovan Buterakos, Anasua Chatterjee, Sankar Das Sarma, Mark A. Eriksson, Eliška Greplová, Michael J. Gullans, Fabian Hader, Tyler J. Kovach, Pranav S. Mundada, Mick Ramsey, Torbjørn Rasmussen, Brandon Severin, Anthony Sigillito, Brennan Undseth, Brian Weber,
- Abstract summary: Gate-defined quantum dots are a promising system for realizing scalable, coupled qubit systems.
However, present-day quantum dot devices suffer from imperfections that must be accounted for.
We aim to provide guidance and inspiration to researchers invested in automation efforts.
- Score: 0.8768081687253924
- License:
- Abstract: Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. This meeting report outlines current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present insights and ideas put forward by the quantum dot community on how to overcome them. We aim to provide guidance and inspiration to researchers invested in automation efforts.
Related papers
- How to Build a Quantum Supercomputer: Scaling Challenges and Opportunities [3.864855748348313]
Small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits.
Despite significant progress and excitement, the path toward a full-stack scalable technology is largely unknown.
We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits.
arXiv Detail & Related papers (2024-11-15T18:22:46Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Dynamic Inhomogeneous Quantum Resource Scheduling with Reinforcement Learning [17.229068960497273]
A central challenge in quantum information science and technology is achieving real-time estimation and feedforward control of quantum systems.
We introduce a new framework utilizing a Transformer model that emphasizes self-attention mechanisms for pairs of qubits.
Our method significantly improves the performance of quantum systems, achieving more than a 3$times$ improvement over rule-based agents.
arXiv Detail & Related papers (2024-05-25T23:39:35Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Engineered Dissipation for Quantum Information Science [0.0]
Dissipation is an essential tool for manipulating quantum information.
Dissipation engineering enables quantum measurement, quantum state preparation, and quantum state stabilization.
arXiv Detail & Related papers (2022-02-10T19:00:01Z) - Estimating gate-set properties from random sequences [0.0]
Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
arXiv Detail & Related papers (2021-10-25T18:01:25Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - A semi-agnostic ansatz with variable structure for quantum machine learning [0.3774866290142281]
Variational Quantum Algorithms (VQAs) offer a powerful, flexible paradigm for programming near-term quantum computers.
We present a variable structure approach to build ansatzes for VQAs.
We employ VAns in the variational quantum eigensolver for condensed matter and quantum chemistry applications.
arXiv Detail & Related papers (2021-03-11T14:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.