論文の概要: Efficient Discrete Physics-informed Neural Networks for Addressing
Evolutionary Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2312.14608v1
- Date: Fri, 22 Dec 2023 11:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 15:15:03.438496
- Title: Efficient Discrete Physics-informed Neural Networks for Addressing
Evolutionary Partial Differential Equations
- Title(参考訳): 進化的部分微分方程式に対処する離散物理学インフォームドニューラルネットワーク
- Authors: Siqi Chen, Bin Shan, Ye Li
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)を解く有望な可能性を示している。
PINNの損失における時間的特徴の全てを同時に訓練するため、PINNは時間的因果性に違反する可能性がある。
本稿では,時間的因果関係を強制するために暗黙の時間差分法を用い,空間内のPINNを異なる時間フレームにおけるPDEソリューションのサロゲートとして逐次更新するために転送学習を用いることを提案する。
- 参考スコア(独自算出の注目度): 7.235476098729406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have shown promising potential for
solving partial differential equations (PDEs) using deep learning. However,
PINNs face training difficulties for evolutionary PDEs, particularly for
dynamical systems whose solutions exhibit multi-scale or turbulent behavior
over time. The reason is that PINNs may violate the temporal causality property
since all the temporal features in the PINNs loss are trained simultaneously.
This paper proposes to use implicit time differencing schemes to enforce
temporal causality, and use transfer learning to sequentially update the PINNs
in space as surrogates for PDE solutions in different time frames. The evolving
PINNs are better able to capture the varying complexities of the evolutionary
equations, while only requiring minor updates between adjacent time frames. Our
method is theoretically proven to be convergent if the time step is small and
each PINN in different time frames is well-trained. In addition, we provide
state-of-the-art (SOTA) numerical results for a variety of benchmarks for which
existing PINNs formulations may fail or be inefficient. We demonstrate that the
proposed method improves the accuracy of PINNs approximation for evolutionary
PDEs and improves efficiency by a factor of 4-40x.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)を解く有望な可能性を示している。
しかし、PINNは進化的PDE、特に時間とともに多スケールまたは乱流の挙動を示す動的システムに対する訓練困難に直面している。
PINNの損失の時間的特徴が同時に訓練されているため、PINNが時間的因果性に反する可能性がある。
本稿では,時間的因果関係を強制するために暗黙の時間差のスキームを用い,空間内のピンを異なる時間枠のpde解のサロゲートとして逐次更新する転送学習法を提案する。
進化するPINNは、隣接する時間フレーム間の小さな更新しか必要とせず、進化方程式の様々な複雑さを捉えることができる。
本手法は, 時間ステップが小さく, 異なる時間フレームのピンが十分に訓練されている場合, 理論的に収束することが証明される。
さらに、既存のPINNの定式化が失敗したり、非効率であったりする様々なベンチマークに対して、最先端(SOTA)数値結果を提供する。
提案手法は,進化的PDEのPINN近似の精度を向上し,効率を4~40倍に向上することを示した。
関連論文リスト
- A Sequential Meta-Transfer (SMT) Learning to Combat Complexities of
Physics-Informed Neural Networks: Application to Composites Autoclave
Processing [1.6317061277457001]
PINNは非線形偏微分方程式の解法として人気がある。
PINNは、与えられたPDEシステムの特定の実現を近似するように設計されている。
新しいシステム構成に効率的に適応するために必要な一般化性は欠如している。
論文 参考訳(メタデータ) (2023-08-12T02:46:54Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - iPINNs: Incremental learning for Physics-informed neural networks [66.4795381419701]
物理インフォームドニューラルネットワーク(PINN)は、最近偏微分方程式(PDE)を解く強力なツールとなっている。
本稿では,新しいタスクのパラメータを追加せずに連続的に複数のタスクを学習できるインクリメンタルPINNを提案する。
提案手法は,PDEごとに個別のサブネットワークを作成し,従来のサブネットワークと重なり合うようにすることで,最も単純なPDEから複数のPDEを学習する。
論文 参考訳(メタデータ) (2023-04-10T20:19:20Z) - A unified scalable framework for causal sweeping strategies for
Physics-Informed Neural Networks (PINNs) and their temporal decompositions [22.514769448363754]
PINNとXPINNの時間依存型PDEのトレーニング課題について論じる。
PINNとXPINNのギャップを埋める新しい積み重ね分解法を提案する。
また,従来のPINNの因果性にインスパイアされた新しいタイムスウィーピング・コロケーション・ポイント・アルゴリズムを定式化した。
論文 参考訳(メタデータ) (2023-02-28T01:19:21Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
物理インフォームドセル表現(PIXEL)と呼ばれる新しいデータ駆動型PDEの解法を提案する。
PIXELは古典的な数値法と学習に基づくアプローチをエレガントに組み合わせている。
PIXELは高速収束速度と高精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T10:46:56Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。