論文の概要: Self-Admitted Technical Debt Detection Approaches: A Decade Systematic Review
- arxiv url: http://arxiv.org/abs/2312.15020v3
- Date: Sat, 21 Sep 2024 19:56:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 09:05:28.615924
- Title: Self-Admitted Technical Debt Detection Approaches: A Decade Systematic Review
- Title(参考訳): 自己申告型技術的負債検出手法:10年次システムレビュー
- Authors: Edi Sutoyo, Andrea Capiluppi,
- Abstract要約: 技術的負債 (Technical debt, TD) とは、ソフトウェア開発において、最適な設計やコード決定に関連する長期的なコストを表す用語である。
開発者がこれらのトレードオフを明確に認めると、SATD(Self-Admitted Technical Debt)が発生する。
SATDの自動検出は、ますます重要な研究領域となっている。
- 参考スコア(独自算出の注目度): 5.670597842524448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Technical debt (TD) represents the long-term costs associated with suboptimal design or code decisions in software development, often made to meet short-term delivery goals. Self-Admitted Technical Debt (SATD) occurs when developers explicitly acknowledge these trade-offs in the codebase, typically through comments or annotations. Automated detection of SATD has become an increasingly important research area, particularly with the rise of natural language processing (NLP), machine learning (ML), and deep learning (DL) techniques that aim to streamline SATD detection. This systematic literature review provides a comprehensive analysis of SATD detection approaches published between 2014 and 2024, focusing on the evolution of techniques from NLP-based models to more advanced ML, DL, and Transformers-based models such as BERT. The review identifies key trends in SATD detection methodologies and tools, evaluates the effectiveness of different approaches using metrics like precision, recall, and F1-score, and highlights the primary challenges in this domain, including dataset heterogeneity, model generalizability, and the explainability of models. The findings suggest that while early NLP methods laid the foundation for SATD detection, more recent advancements in DL and Transformers models have significantly improved detection accuracy. However, challenges remain in scaling these models for broader industrial use. This SLR offers insights into current research gaps and provides directions for future work, aiming to improve the robustness and practicality of SATD detection tools.
- Abstract(参考訳): 技術的負債(Technical debt, TD)とは、ソフトウェア開発において、短期的なデリバリ目標を達成するために行われる、最適な設計やコード決定に関連する長期的なコストのことである。
Self-Admitted Technical Debt (SATD) は、開発者がコードベースで、通常コメントやアノテーションを通じて、これらのトレードオフを明確に認めるときに発生する。
SATDの自動検出は、特に自然言語処理(NLP)、機械学習(ML)、SATD検出の合理化を目的としたディープラーニング(DL)技術の台頭により、ますます重要な研究領域となっている。
この体系的な文献レビューは、2014年から2024年にかけて発行されたSATD検出アプローチを包括的に分析し、NLPベースのモデルからより高度なML、DL、BERTのようなトランスフォーマーベースのモデルへの進化に焦点を当てている。
このレビューでは、SATD検出手法とツールの主なトレンドを特定し、精度、リコール、F1スコアといったメトリクスを用いて異なるアプローチの有効性を評価し、データセットの不均一性、モデルの一般化可能性、モデルの説明可能性など、この分野における主要な課題を強調している。
その結果,早期のNLP法はSATD検出の基礎となったが,近年のDLモデルとTransformersモデルの進歩により検出精度が大幅に向上したことが示唆された。
しかし、これらのモデルを幅広い産業用途に拡張することは依然として課題である。
このSLRは、現在の研究ギャップに関する洞察を提供し、SATD検出ツールの堅牢性と実用性を改善することを目的として、今後の研究の方向性を提供する。
関連論文リスト
- What Really Matters for Learning-based LiDAR-Camera Calibration [50.2608502974106]
本稿では,学習に基づくLiDAR-Cameraキャリブレーションの開発を再考する。
我々は、広く使われているデータ生成パイプラインによる回帰ベースの手法の限界を識別する。
また,入力データ形式と前処理操作がネットワーク性能に与える影響についても検討する。
論文 参考訳(メタデータ) (2025-01-28T14:12:32Z) - Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations [0.0]
提案したADフレームワークとHITLベースのADフレームワークの比較評価を行うために,高度なパフォーマンス指標を採用している。
このアプローチは、サイバーセキュリティの課題が進展する中で、電力系統運用の信頼性を高めるための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-09T18:38:35Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - A Novel Generative AI-Based Framework for Anomaly Detection in Multicast Messages in Smart Grid Communications [0.0]
デジタル変電所におけるサイバーセキュリティ侵害は、電力系統の運用の安定性と信頼性に重大な課題をもたらす。
本稿では,マルチキャストメッセージのデータセットにおける異常検出(AD)のためのタスク指向対話システムを提案する。
潜在的なエラーが低く、人間の推奨するサイバーセキュリティガイドラインを考えるプロセスよりもスケーラビリティと適応性が向上します。
論文 参考訳(メタデータ) (2024-06-08T13:28:50Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices [3.1466086042810884]
トランスフォーマーベースの言語モデルは、幅広いNLPタスクに新しいベンチマークを設定している。
予測の不確実性を確実に見積もるのは 重要な課題です
モデル信頼度を評価するために,複数の頭部・層にまたがるアテンションマップの幾何学的特徴を活用することで,これらの制約に対処する。
提案手法は,アクセプタビリティ判定と人工テキスト検出のためのベンチマークにおいて,既存の不確実性推定手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-08-22T09:17:45Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQMは,大規模な言語モデルに対して,翻訳におけるエラーの識別と分類を求めるプロンプト技術である。
テキスト内学習と微調整によるラベル付きデータの影響について検討する。
次に, PaLM-2モデルを用いてAutoMQMを評価し, スコアのプロンプトよりも性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-08-14T17:17:21Z) - Deep Transfer Learning for Automatic Speech Recognition: Towards Better
Generalization [3.6393183544320236]
深層学習(DL)における音声認識の課題
大規模なトレーニングデータセットと高い計算とストレージリソースが必要です。
ディープトランスファーラーニング(DTL)はこれらの問題を克服するために導入された。
論文 参考訳(メタデータ) (2023-04-27T21:08:05Z) - On the Reliability and Explainability of Language Models for Program
Generation [15.569926313298337]
自動プログラム生成手法の能力と限界について検討する。
私たちは、コード変換に大きく貢献するトークンを強調するために、高度な説明可能なAIアプローチを採用しています。
解析の結果,言語モデルではコード文法や構造情報を認識できるが,入力シーケンスの変化に対するロバスト性は限られていることがわかった。
論文 参考訳(メタデータ) (2023-02-19T14:59:52Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。