論文の概要: HyperMix: Out-of-Distribution Detection and Classification in Few-Shot
Settings
- arxiv url: http://arxiv.org/abs/2312.15086v1
- Date: Fri, 22 Dec 2023 21:56:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 20:02:06.575350
- Title: HyperMix: Out-of-Distribution Detection and Classification in Few-Shot
Settings
- Title(参考訳): hypermix: アウトオブディストリビューションの検出と分類
- Authors: Nikhil Mehta, Kevin J Liang, Jing Huang, Fu-Jen Chu, Li Yin, Tal
Hassner
- Abstract要約: 最近の最先端のOOD法は、数ショット設定で単純なベースラインを上回りません。
生成したパラメータに対してMixupを用いたHyperMixと呼ばれるハイパーネットワークフレームワークを提案する。
我々はCIFAR-FSとMiniImageNetで実験を行い、数ショットで他のOOD法よりも優れています。
- 参考スコア(独自算出の注目度): 30.244612164612878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is an important topic for real-world
machine learning systems, but settings with limited in-distribution samples
have been underexplored. Such few-shot OOD settings are challenging, as models
have scarce opportunities to learn the data distribution before being tasked
with identifying OOD samples. Indeed, we demonstrate that recent
state-of-the-art OOD methods fail to outperform simple baselines in the
few-shot setting. We thus propose a hypernetwork framework called HyperMix,
using Mixup on the generated classifier parameters, as well as a natural
out-of-episode outlier exposure technique that does not require an additional
outlier dataset. We conduct experiments on CIFAR-FS and MiniImageNet,
significantly outperforming other OOD methods in the few-shot regime.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出は、現実世界の機械学習システムにとって重要なトピックであるが、限定的な分散サンプルによる設定は過小評価されている。
モデルがOODサンプルを識別する前にデータ配布を学習する機会が少ないため、このような数ショットのOOD設定は難しい。
実際、最近の最先端OOD法は、数ショット設定で単純なベースラインを上回りません。
そこで我々はHyperMixと呼ばれるハイパーネットワークフレームワークを提案し、生成した分類器パラメータのMixupと、追加のoutlierデータセットを必要としない自然なout-of-episodeoutlierエクスポージャー手法を提案する。
我々はCIFAR-FSとMiniImageNetで実験を行い、数ショットで他のOOD法よりも優れています。
関連論文リスト
- Learning Multi-Manifold Embedding for Out-Of-Distribution Detection [16.283293167689948]
オフ・オブ・ディストリビューション(OOD)サンプルは、現実世界のアプリケーションにおいて信頼できるAIにとって不可欠である。
本稿では,OOD検出の強化を目的としたMMEL(Multi-Manifold Embedding Learning)フレームワークを提案する。
MMELは代表埋め込みを生成し、OODサンプルの識別にプロトタイプ認識スコアリング機能を利用する。
論文 参考訳(メタデータ) (2024-09-19T05:43:00Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
アウト・オブ・ディストリビューション(OOD)検出は、異常サンプルを特定しようとする機械学習において重要なタスクである。
従来、教師なし手法はOOD検出に深い生成モデルを用いていた。
本稿では,単一モデルが多様なタスクに対してOOD検出を行うことができるかどうかを考察する。
論文 参考訳(メタデータ) (2024-05-20T08:54:03Z) - Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure [0.0]
Denoising Diffusion Probabilistic Models (DDPM) を用いたOODデータ生成のためのラベル混合手法を提案する。
実験の結果,メトリック学習に基づく損失関数はソフトマックスよりも優れていた。
提案手法は従来のOOD検出指標において高いベースラインを達成している。
論文 参考訳(メタデータ) (2024-05-01T16:58:22Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-Distribution(OOD)検出は、現実のアプリケーションに信頼性の高い機械学習モデルをデプロイするために重要である。
近年, 外部曝露によるOOD検出に有意な結果が得られた。
本稿では,補助外乱量に基づく情報外挿による効果的なOOD検出のための新しい枠組み,すなわちDivOE(Diversified Outlier Exposure)を提案する。
論文 参考訳(メタデータ) (2023-10-21T07:16:09Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - NGC: A Unified Framework for Learning with Open-World Noisy Data [36.96188289965334]
本稿では,データの幾何学的構造とモデル予測信頼性を利用して,クリーンなサンプルを収集するグラフベースの新しいフレームワークであるNoisy Graph Cleaning(NGC)を提案する。
異なる種類のノイズを持つ複数のベンチマークで実験を行い、その結果、我々の手法の最先端性能を実証した。
論文 参考訳(メタデータ) (2021-08-25T04:04:46Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
ラベル付きデータに制限がある場合に、ラベルなしデータを利用して強力なモデルをトレーニングする半教師付き学習(SSL)が提案されている。
我々は、Open-set SSLと呼ばれるより複雑な新しいシナリオに対処する。
提案手法は,OOD試料の効果を除去し,最先端の結果を得る。
論文 参考訳(メタデータ) (2020-07-22T10:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。