論文の概要: Large Language Models (LLMs) as Traffic Control Systems at Urban Intersections: A New Paradigm
- arxiv url: http://arxiv.org/abs/2411.10869v1
- Date: Sat, 16 Nov 2024 19:23:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:00.455720
- Title: Large Language Models (LLMs) as Traffic Control Systems at Urban Intersections: A New Paradigm
- Title(参考訳): 都市交差点における交通制御システムとしての大規模言語モデル:新しいパラダイム
- Authors: Sari Masri, Huthaifa I. Ashqar, Mohammed Elhenawy,
- Abstract要約: 本研究では,Large Language Models (LLM) をトラヒックコントローラとして利用することで,トラヒック制御システムに新たなアプローチを提案する。
この研究は、論理的推論、シーン理解、意思決定能力を利用してスループットを最適化し、リアルタイムで交通状況に基づいたフィードバックを提供する。
- 参考スコア(独自算出の注目度): 5.233512464561313
- License:
- Abstract: This study introduces a novel approach for traffic control systems by using Large Language Models (LLMs) as traffic controllers. The study utilizes their logical reasoning, scene understanding, and decision-making capabilities to optimize throughput and provide feedback based on traffic conditions in real-time. LLMs centralize traditionally disconnected traffic control processes and can integrate traffic data from diverse sources to provide context-aware decisions. LLMs can also deliver tailored outputs using various means such as wireless signals and visuals to drivers, infrastructures, and autonomous vehicles. To evaluate LLMs ability as traffic controllers, this study proposed a four-stage methodology. The methodology includes data creation and environment initialization, prompt engineering, conflict identification, and fine-tuning. We simulated multi-lane four-leg intersection scenarios and generates detailed datasets to enable conflict detection using LLMs and Python simulation as a ground truth. We used chain-of-thought prompts to lead LLMs in understanding the context, detecting conflicts, resolving them using traffic rules, and delivering context-sensitive traffic management solutions. We evaluated the prformance GPT-mini, Gemini, and Llama as traffic controllers. Results showed that the fine-tuned GPT-mini achieved 83% accuracy and an F1-score of 0.84. GPT-mini model exhibited a promising performance in generating actionable traffic management insights, with high ROUGE-L scores across conflict identification of 0.95, decision-making of 0.91, priority assignment of 0.94, and waiting time optimization of 0.92. We demonstrated that LLMs can offer precise recommendations to drivers in real-time including yielding, slowing, or stopping based on vehicle dynamics.
- Abstract(参考訳): 本研究では,Large Language Models (LLM) をトラヒックコントローラとして利用することで,トラヒック制御システムに新たなアプローチを提案する。
この研究は、論理的推論、シーン理解、意思決定機能を利用してスループットを最適化し、リアルタイムで交通条件に基づいたフィードバックを提供する。
LLMは、伝統的に接続されていないトラフィック制御プロセスを集中化し、さまざまなソースからのトラフィックデータを統合して、コンテキスト対応の意思決定を提供する。
LLMは、無線信号や視覚などの様々な手段を使って、運転者、インフラ、自動運転車に調整された出力を提供することもできる。
交通管制官としてのLCMの能力を評価するため,本研究では4段階の手法を提案する。
この方法論には、データ生成と環境の初期化、プロンプトエンジニアリング、競合識別、微調整が含まれる。
マルチレーン4脚交叉シナリオをシミュレートし、詳細なデータセットを生成し、LLMとPythonのシミュレーションを基礎となる真実としてコンフリクト検出を実現した。
我々は、LLMをリードするチェーン・オブ・シント・プロンプトを使用して、コンテキストを理解し、競合を検出し、トラフィックルールを使用してそれらを解決し、コンテキストに敏感なトラフィック管理ソリューションを提供する。
GPT-mini, Gemini, Llamaをトラヒックコントローラとして評価した。
その結果,微調整GPT-miniの精度は83%,F1スコアは0.84。
GPT-miniモデルは、競合識別0.95のROUGE-Lスコア、意思決定0.91の優先度割り当て0.94の優先度割り当て、待機時間最適化0.92の動作可能なトラフィック管理インサイトを生成する上で有望な性能を示した。
LLMは、車両の動力学に基づく利得、減速、停止を含む、ドライバーに正確なレコメンデーションをリアルタイムで提供できることを実証した。
関連論文リスト
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
交通予測における大きな課題は、非常に異なる交通条件によって引き起こされる多様なデータ分散を扱うことである。
近位交通情報を考慮した交通予測のためのグラフ対応LLMを提案する。
我々は、新しいデータ分散に直面する際に、ドメイン適応を効率的にするための軽量なアプローチを採用する。
論文 参考訳(メタデータ) (2024-10-28T09:19:29Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
マルチモーダリティ強化LLMに基づくエンドツーエンド意思決定モデルを提案する。
ペア化されたCoTと計画結果との推論・決定アライメントの制約を提案する。
提案する大規模言語プランナをRDA-Driverとして推論・決定アライメントする。
論文 参考訳(メタデータ) (2024-08-25T16:43:47Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
本研究は,大規模言語モデルを交通信号制御システムに統合する革新的なアプローチを導入する。
LLMを知覚と意思決定ツールのスイートで強化するハイブリッドフレームワークが提案されている。
シミュレーションの結果から,交通環境の多種性に適応するシステムの有効性が示された。
論文 参考訳(メタデータ) (2024-03-13T08:41:55Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
現実世界の都市では、センサーの欠如により交通状態の観察が欠如することがある。
本稿では, 適応制御を実現するために, トラフィック状態をインプットし, 適応制御とRLエージェントの訓練を可能にするために, 状態と報酬の両方をインプットする2つの方法を提案する。
論文 参考訳(メタデータ) (2023-04-21T03:26:33Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
制御可能で現実的な交通シミュレーションは、自動運転車の開発と検証に不可欠である。
データ駆動アプローチは現実的で人間的な振る舞いを生成し、シミュレートされたトラフィックから現実のトラフィックへの移行を改善する。
本研究では,制御可能なトラヒック生成(CTG)のための条件拡散モデルを構築し,テスト時に所望のトラジェクトリ特性を制御できるようにする。
論文 参考訳(メタデータ) (2022-10-31T14:44:59Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
本稿では,交通信号制御のためのモデルベースメタ強化学習フレームワーク(ModelLight)を提案する。
ModelLight内では、道路交差点のためのモデルのアンサンブルと最適化に基づくメタラーニング法を用いて、RLベースのトラヒックライト制御方式のデータ効率を改善する。
実世界のデータセットの実験では、ModelLightが最先端のトラヒックライト制御アルゴリズムより優れていることが示されている。
論文 参考訳(メタデータ) (2021-11-15T20:25:08Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。