論文の概要: SVGDreamer: Text Guided SVG Generation with Diffusion Model
- arxiv url: http://arxiv.org/abs/2312.16476v3
- Date: Sun, 17 Mar 2024 09:12:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 02:32:43.015934
- Title: SVGDreamer: Text Guided SVG Generation with Diffusion Model
- Title(参考訳): SVGDreamer:拡散モデルによるテキストガイドSVG生成
- Authors: Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, Qian Yu,
- Abstract要約: SVGDreamerと呼ばれる新しいテキスト誘導ベクトルグラフィックス合成法を提案する。
SIVEプロセスは、前景オブジェクトと背景への合成の分解を可能にする。
VPSDアプローチは、彩度の過飽和、ベクトルプリミティブの過度な平滑化、限られた結果の多様性といった課題に取り組む。
- 参考スコア(独自算出の注目度): 31.76771064173087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, text-guided scalable vector graphics (SVGs) synthesis has shown promise in domains such as iconography and sketch. However, existing text-to-SVG generation methods lack editability and struggle with visual quality and result diversity. To address these limitations, we propose a novel text-guided vector graphics synthesis method called SVGDreamer. SVGDreamer incorporates a semantic-driven image vectorization (SIVE) process that enables the decomposition of synthesis into foreground objects and background, thereby enhancing editability. Specifically, the SIVE process introduce attention-based primitive control and an attention-mask loss function for effective control and manipulation of individual elements. Additionally, we propose a Vectorized Particle-based Score Distillation (VPSD) approach to tackle the challenges of color over-saturation, vector primitives over-smoothing, and limited result diversity in existing text-to-SVG generation methods. Furthermore, on the basis of VPSD, we introduce Reward Feedback Learning (ReFL) to accelerate VPSD convergence and improve aesthetic appeal. Extensive experiments have been conducted to validate the effectiveness of SVGDreamer, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. The code and demo of SVGDreamer can be found at https://ximinng.github.io/SVGDreamer-project/
- Abstract(参考訳): 近年,テキスト誘導型スケーラブルベクターグラフィックス (SVG) 合成はイコノグラフィやスケッチなどの領域で有望であることが示されている。
しかし、既存のテキスト-SVG生成手法は編集性に欠け、視覚的品質と結果の多様性に苦慮している。
これらの制約に対処するために,SVGDreamer と呼ばれる新しいテキスト誘導ベクトルグラフィックス合成法を提案する。
SVGDreamerは、前景オブジェクトと背景への合成の分解を可能にする意味駆動画像ベクトル化(SIVE)プロセスを導入し、編集性を向上させる。
具体的には、SIVEプロセスは、注目に基づくプリミティブ制御と、個々の要素の効果的な制御と操作のためのアテンションマスク損失関数を導入している。
さらに,色過飽和,ベクトルプリミティブ過平滑化,および既存のテキスト-SVG生成手法における限られた結果の多様性に対処するために,ベクトル化粒子を用いたスコア蒸留(VPSD)手法を提案する。
さらに,VPSDをベースとしたReward Feedback Learning(ReFL)を導入し,VPSDの収束を加速し,美的魅力を向上させる。
SVGDreamerの有効性を検証するために大規模な実験が行われ、編集性、視覚的品質、多様性の点でベースライン法よりも優れていることが示されている。
SVGDreamerのコードとデモはhttps://ximinng.github.io/SVGDreamer-project/にある。
関連論文リスト
- NeuralSVG: An Implicit Representation for Text-to-Vector Generation [54.4153300455889]
本稿では,テキストプロンプトからベクトルグラフィックスを生成する暗黙的なニューラル表現であるNeuralSVGを提案する。
生成したSVGの層構造を促進するために,ドロップアウトに基づく正規化手法を導入する。
ニューラルSVGは、構造化された柔軟なSVGを生成する際に、既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-01-07T18:50:06Z) - SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion [32.01103570298614]
SVGFusionは、現実のSVGデータへのスケーリングが可能なテキストからSVGモデルである。
人気のあるText-to-Imageフレームワークを使って、ベクターグラフィックスのための連続的な潜伏空間を学習する。
品質と一般化性の向上を実現し、新たなSVGコンテンツ作成を実現する。
論文 参考訳(メタデータ) (2024-12-11T09:02:25Z) - SVGDreamer++: Advancing Editability and Diversity in Text-Guided SVG Generation [31.76771064173087]
既存の手法の限界に対処する新しいテキスト誘導ベクトルグラフィックス合成法を提案する。
本稿では,階層型イメージベクタライゼーション(HIVE)フレームワークについて紹介する。
また、SVGの多様性を向上させるために、ベクトル化粒子を用いたスコア蒸留(VPSD)手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T19:13:38Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVGは、高速かつ高精度な画像ベクトル化を実現するスーパーピクセルベースのベクトル化モデルである。
本稿では,2段階の自己学習フレームワークを提案する。そこでは,粗い段階モデルを用いて主構造を再構築し,細部を充実させるために改良段階モデルを用いる。
再現精度と推定時間の観点から, 最先端手法と比較して, 提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-06-14T07:43:23Z) - StarVector: Generating Scalable Vector Graphics Code from Images and Text [15.32194071443065]
本稿では,SVG生成のための多モーダル大言語モデルであるStarを紹介する。
画像のセマンティクスを理解し、SVGプリミティブをコンパクトで正確な出力に使用することにより、画像ベクトル化を行う。
ベクトル化タスク間の一般化を可能にする2Mサンプルの多種多様なデータセットであるStarStackをトレーニングする。
論文 参考訳(メタデータ) (2023-12-17T08:07:32Z) - Beyond Pixels: Exploring Human-Readable SVG Generation for Simple Images
with Vision Language Models [19.145503353922038]
本稿では,Simple-SVG-Generation (Stextsuperscript2VGtextsuperscript2)を提案する。
本手法は,正確かつ簡便なSVGの生成と,人間の可読性と理解の整合性に重点を置いている。
その結果,従来のSVG生成手法よりも明らかに改善された結果が得られた。
論文 参考訳(メタデータ) (2023-11-27T05:20:11Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
画像をSVGに変換し,画像トポロジを同時に維持するためのレイヤワイズ画像ベクトル化(LIVE)を提案する。
Liveは、人間の視点にセマンティックに整合した階層構造を持つコンパクトなフォームを生成する。
Liveは、デザイナの両方のために編集可能なSVGを起動し、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
シーン内の車両の動きを予想することは、安全な自動運転システムにとって重要な問題である。
この目的のために、シーンのインフラの理解は、しばしば将来の軌跡を予測する主要な手がかりである。
提案手法のほとんどが逆逆変換方式のシーンを表現しており、近年のアプローチではカスタムベクトル化方式が採用されている。
論文 参考訳(メタデータ) (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
本稿では,複雑なSVGアイコンの生成と操作のために,DeepSVGと呼ばれる新しい階層型生成ネットワークを提案する。
我々のアーキテクチャは、その形状自体をエンコードする低レベルのコマンドから、効果的に高レベルの形状を分離します。
我々のネットワークは、多様なベクトルグラフィックスを正確に再構築し、強力なアニメーションツールとして機能することを実証する。
論文 参考訳(メタデータ) (2020-07-22T09:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。