Evolutionary reduction of the laser noise impact on quantum gates
- URL: http://arxiv.org/abs/2312.16709v1
- Date: Wed, 27 Dec 2023 20:17:13 GMT
- Title: Evolutionary reduction of the laser noise impact on quantum gates
- Authors: Tam'si Ley, Anna Ouskova Leonteva, Johannes Schachenmayer, Pierre
Collet
- Abstract summary: Noise randomly corrupts the design of quantum logical gates.
Several methods already exist to reduce the impacts of noise on that matter.
This paper proposes a relevant method based on evolutionary optimisation and modulation of the gate design.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the size of quantum hardware progressively increases, the conjectured
computational advantages of quantum technologies tend to be threatened by
noise, which randomly corrupts the design of quantum logical gates. Several
methods already exist to reduce the impacts of noise on that matter. However, a
reliable and user-friendly one to reduce the noise impact has not been
presented yet. Addressing this issue, this paper proposes a relevant method
based on evolutionary optimisation and modulation of the gate design. This
method consists of two parts : a model of quantum gate design with
time-dependent noise terms, parameterised by a vector of laser phases, and an
evolutionary optimisation platform aimed at satisfying a trade-off between the
gate fidelity and a pulse duration-related metric of the time consuming
simulation model. This feature is the main novelty of this work. Another
advantage is the ability to treat any noise spectrum, regardless of its
characteristics (e.g., variance, frequency range, etc). A thorough validation
of the method is presented, which is based on empirical averaging of random
gate trajectories. It is shown that evolutionary based method is successfully
applied for noise mitigation. It is expected that the proposed method will help
designing more and more noise-resisting quantum gates.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Improving Zero-noise Extrapolation for Quantum-gate Error Mitigation using a Noise-aware Folding Method [0.0]
We introduce a noise-aware folding technique that enhances Zero-Noise Extrapolation (ZNE)
Our method redistributes noise using calibration data based on hardware noise models.
By employing a noise-adaptive compilation method combined with our proposed folding mechanism, we enhance the ZNE accuracy of quantum gate-based computing.
arXiv Detail & Related papers (2024-01-23T05:36:40Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
arXiv Detail & Related papers (2023-03-09T02:50:53Z) - Quantum Control for Time-dependent Noise by Inverse Geometric
Optimization [10.292957036462829]
We extend and apply the recently proposed robust control technique of inverse geometric optimization to time-dependent noises.
We show that the proposed method can produce high-quality robust pulses for realizing desired quantum evolutions under realistic noise models.
arXiv Detail & Related papers (2022-05-05T08:50:02Z) - Robust resource-efficient quantum variational ansatz through
evolutionary algorithm [0.46180371154032895]
Vari quantum algorithms (VQAsational) are promising methods to demonstrate quantum advantage on near-term devices.
We show that a fixed VQA circuit design, such as the widely-used hardware efficient ansatz, is not necessarily robust against imperfections.
We propose a genome-length-adjustable evolutionary algorithm to design a robust VQA circuit that is optimized over variations of both circuit ansatz and gate parameters.
arXiv Detail & Related papers (2022-02-28T12:14:11Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.