論文の概要: Joint Signal Recovery and Graph Learning from Incomplete Time-Series
- arxiv url: http://arxiv.org/abs/2312.16940v1
- Date: Thu, 28 Dec 2023 10:27:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 16:27:44.634273
- Title: Joint Signal Recovery and Graph Learning from Incomplete Time-Series
- Title(参考訳): 不完全時系列からのジョイント信号回復とグラフ学習
- Authors: Amirhossein Javaheri, Arash Amini, Farokh Marvasti, Daniel P. Palomar
- Abstract要約: 本研究では,不完全な時系列観測からグラフを学習することを目的とする。
逐次上向き最小化をブロックする手法に基づくアルゴリズムを提案する。
合成時系列と実時間時系列のシミュレーション結果から,提案手法の性能を実証した。
- 参考スコア(独自算出の注目度): 24.308357458676937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning a graph from data is the key to taking advantage of graph signal
processing tools. Most of the conventional algorithms for graph learning
require complete data statistics, which might not be available in some
scenarios. In this work, we aim to learn a graph from incomplete time-series
observations. From another viewpoint, we consider the problem of semi-blind
recovery of time-varying graph signals where the underlying graph model is
unknown. We propose an algorithm based on the method of block successive
upperbound minimization (BSUM), for simultaneous inference of the signal and
the graph from incomplete data.
Simulation results on synthetic and real time-series demonstrate the
performance of the proposed method for graph learning and signal recovery.
- Abstract(参考訳): データからグラフを学ぶことが、グラフ信号処理ツールを活用する鍵となります。
グラフ学習の従来のアルゴリズムのほとんどは、完全なデータ統計を必要とするが、いくつかのシナリオでは利用できない。
本研究では,不完全な時系列観測からグラフを学習することを目的とする。
別の観点からは、基礎となるグラフモデルが未知である時変グラフ信号の半盲回復の問題を考える。
本稿では,不完全データからの信号とグラフの同時推定のためのブロック逐次上界最小化法(bsum)に基づくアルゴリズムを提案する。
合成および実時間時系列のシミュレーション結果から,提案するグラフ学習法と信号復元法の性能を示す。
関連論文リスト
- Online Network Inference from Graph-Stationary Signals with Hidden Nodes [31.927912288598467]
本稿では,隠れノードの存在を考慮したオンライングラフ推定手法を提案する。
次に、ストリーミング不完全グラフ信号からのグラフ学習のための凸最適化問題を定式化する。
論文 参考訳(メタデータ) (2024-09-13T12:09:09Z) - Joint Data Inpainting and Graph Learning via Unrolled Neural Networks [1.8999296421549168]
基礎となるグラフトポロジと欠測値の両方を推定するアルゴリズムを提案する。
提案手法はグラフ学習とグラフ信号再構成アルゴリズムの両方に利用できる。
論文 参考訳(メタデータ) (2024-07-16T06:46:41Z) - Graph Laplacian Learning with Exponential Family Noise [8.594140167290098]
指数関数的家族雑音によるグラフ信号から学習するための多目的グラフ推論フレームワークを提案する。
本フレームワークは,連続的なスムーズなグラフ信号から様々なデータタイプまで,従来の手法を一般化する。
論文 参考訳(メタデータ) (2023-06-14T02:09:52Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
グラフ学習アルゴリズムは多くのグラフ解析タスクで最先端のパフォーマンスを達成した。
1つの理由は、グラフ学習アルゴリズムのパフォーマンスをベンチマークするために実際に使用されるデータセットが極めて少ないためである。
本稿では,合成グラフの生成と,制御シナリオにおけるグラフ学習アルゴリズムの挙動について検討する。
論文 参考訳(メタデータ) (2022-04-04T10:48:32Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - Distributed Graph Learning with Smooth Data Priors [61.405131495287755]
本稿では,ノード上の信号観測からグラフを推論する分散グラフ学習アルゴリズムを提案する。
この結果から,分散手法は,推定グラフの精度を損なうことなく,集中型アルゴリズムよりも通信コストが低いことがわかった。
論文 参考訳(メタデータ) (2021-12-11T00:52:02Z) - FiGLearn: Filter and Graph Learning using Optimal Transport [49.428169585114496]
信号観測からグラフとその生成フィルタを学習するための新しいグラフ信号処理フレームワークを提案する。
ごくわずかな情報しか得られない場合、このフレームワークが欠落した値を推測するのにどのように使えるかを示す。
論文 参考訳(メタデータ) (2020-10-29T10:00:42Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Learning Product Graphs Underlying Smooth Graph Signals [15.023662220197242]
本稿では,製品グラフの形式で与えられるデータから構造化グラフを学習する方法を考案する。
この目的のために、まずグラフ学習問題は線形プログラムとして表され、これは(平均的に)最先端のグラフ学習アルゴリズムより優れている。
論文 参考訳(メタデータ) (2020-02-26T03:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。