論文の概要: Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods
- arxiv url: http://arxiv.org/abs/2312.17298v2
- Date: Tue, 16 Jul 2024 09:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 23:40:44.542898
- Title: Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods
- Title(参考訳): 深層学習法により得られた包括的電子-炭素散乱データへの経験的適合
- Authors: Beata E. Kowal, Krzysztof M. Graczyk, Artur M. Ankowski, Rwik Dharmapal Banerjee, Hemant Prasad, Jan T. Sobczyk,
- Abstract要約: 広い運動領域における炭素の電子散乱断面積に対する経験的適合性を得る。
このようなモデル非依存のパラメトリゼーションを得るための2つの異なる方法とそれに対応する不確実性を考える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the $\chi^2$ defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of $7$%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.
- Abstract(参考訳): ニューラルネットワークの枠組みを応用して、準弾性ピークから共鳴励起を経て深い非弾性散乱の開始まで、広い運動領域上の炭素の電子散乱断面積に実験的に適合することを示す。
このようなモデル非依存のパラメトリゼーションとそれに対応する不確実性を得る2つの異なる方法を考える:ブートストラップ法とモンテカルロのドロップアウト法に基づく。
解析において、$\chi^2$は、各独立した測定セットに対する点対点と正規化の不確かさを含む損失関数を定義する。
我々の統計的アプローチは、同等の品質と、同様の不確実性の7ドル%の順序に適合する。
これらのモデルをテストするために、これらの予測を、トレーニングプロセスから除外されたデータセットとスペクトル関数アプローチで得られた理論的予測と比較する。
両方のモデルの予測は、実験的な測定と理論的な計算と一致している。
また,対象キネマティック領域を超えたデータセットとの比較を行い,ブートストラップ手法は,ドロップアウトアルゴリズムに基づくデータセットよりも,補間能力と補間性能が優れていることを示した。
関連論文リスト
- Predicting path-dependent processes by deep learning [0.5893124686141782]
本研究では,個別に観測された歴史情報に基づく経路依存プロセスの深層学習手法について検討する。
離散観測の頻度は無限大になる傾向にあり、離散観測に基づく予測は連続観測に基づく予測に収束する。
この手法を、分数的ブラウン運動と分数的なO-ウレンベック過程に適用する。
論文 参考訳(メタデータ) (2024-08-19T12:24:25Z) - Estimation of multiple mean vectors in high dimension [4.2466572124753]
我々は,独立標本に基づいて,共通空間上の様々な確率分布の多次元的手段を推定する。
我々のアプローチは、これらのサンプルから得られた経験的手段の凸結合による推定器の形成である。
論文 参考訳(メタデータ) (2024-03-22T08:42:41Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
多変量回帰問題に対する新しい非パラメトリック混合実験モデルを提案する。
条件付きモデルを用いて、サンプル外入力の予測は、観測された各データポイントと類似性に基づいて行われる。
混合物のパラメータと距離測定値に基づいて後部推論を行う。
論文 参考訳(メタデータ) (2020-12-03T18:08:30Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
ディープニューラルネットワークにおける不確実性を定量化するための,新しい単一モデルに基づくアプローチを提案する。
平均場近似式を用いて解析的に難解な積分を計算する。
実験的に,提案手法は最先端の手法と比較して競合的に機能する。
論文 参考訳(メタデータ) (2020-06-13T07:32:38Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Maximum likelihood estimation and uncertainty quantification for
Gaussian process approximation of deterministic functions [10.319367855067476]
本稿は、ガウス過程の回帰の文脈において、ノイズのないデータセットを用いた最初の理論的分析の1つを提供する。
本稿では,スケールパラメータのみの最大推定がガウス過程モデルの不特定に対する顕著な適応をもたらすことを示す。
論文 参考訳(メタデータ) (2020-01-29T17:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。