論文の概要: AIJack: Security and Privacy Risk Simulator for Machine Learning
- arxiv url: http://arxiv.org/abs/2312.17667v1
- Date: Fri, 29 Dec 2023 16:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-02 09:22:00.612304
- Title: AIJack: Security and Privacy Risk Simulator for Machine Learning
- Title(参考訳): AIJack: マシンラーニングのためのセキュリティとプライバシリスクシミュレータ
- Authors: Hideaki Takahashi
- Abstract要約: AIJackは、機械学習モデルのトレーニングとデプロイに関連するセキュリティとプライバシのリスクを評価するために設計された、オープンソースのライブラリである。
統一されたAPIを通じて、様々な攻撃および防御方法のライブラリを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces AIJack, an open-source library designed to assess
security and privacy risks associated with the training and deployment of
machine learning models. Amid the growing interest in big data and AI,
advancements in machine learning research and business are accelerating.
However, recent studies reveal potential threats, such as the theft of training
data and the manipulation of models by malicious attackers. Therefore, a
comprehensive understanding of machine learning's security and privacy
vulnerabilities is crucial for the safe integration of machine learning into
real-world products. AIJack aims to address this need by providing a library
with various attack and defense methods through a unified API. The library is
publicly available on GitHub (https://github.com/Koukyosyumei/AIJack).
- Abstract(参考訳): 本稿では,機械学習モデルのトレーニングとデプロイメントに関連するセキュリティとプライバシのリスクを評価可能な,オープンソースのライブラリであるaijackを紹介する。
ビッグデータとaiへの関心が高まる中、機械学習の研究とビジネスの進歩が加速している。
しかし、最近の研究では、トレーニングデータの盗難や悪意のある攻撃者によるモデルの操作など、潜在的な脅威が明らかになっている。
したがって、機械学習のセキュリティとプライバシの脆弱性に関する包括的な理解は、機械学習を現実世界の製品に安全に統合するために不可欠である。
AIJackは、統一されたAPIを通じて、さまざまな攻撃および防御メソッドを備えたライブラリを提供することで、このニーズに対処することを目指している。
ライブラリはgithubで公開されている(https://github.com/koukyosyumei/aijack)。
関連論文リスト
- A Review on Machine Unlearning [3.1168315477643245]
本稿では、機械学習モデルにおけるセキュリティとプライバシに関する詳細をレビューする。
まず、機械学習が日々の生活でユーザーのプライベートデータをどのように活用できるか、そしてこの問題で果たす役割について述べる。
次に,機械学習モデルにおけるセキュリティ脅威を記述することによって,機械学習の概念を導入する。
論文 参考訳(メタデータ) (2024-11-18T06:18:13Z) - Survey of Security and Data Attacks on Machine Unlearning In Financial and E-Commerce [0.0]
本稿では、金融・電子商取引アプリケーションに焦点をあて、機械学習におけるセキュリティとデータアタックの状況について調査する。
これらのリスクを軽減するため、差分プライバシー、堅牢な暗号保証、ZKP(Zero-Knowledge Proofs)など、さまざまな防衛戦略が検討されている。
この調査は、セキュアマシンアンラーニングにおける継続的な研究とイノベーションの必要性と、進化する攻撃ベクトルに対する強力な防御を開発することの重要性を強調している。
論文 参考訳(メタデータ) (2024-09-29T00:30:36Z) - Machine Unlearning for Document Classification [14.71726430657162]
機械学習として知られる新しいアプローチが登場し、AIモデルを特定の種類のデータを忘れるようにしている。
この研究は、文書分析アプリケーションにおけるプライバシー問題に対処することを目的とした機械学習手法の開発に向けた先駆的なステップである。
論文 参考訳(メタデータ) (2024-04-29T18:16:13Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - Balancing Transparency and Risk: The Security and Privacy Risks of
Open-Source Machine Learning Models [31.658006126446175]
本稿では,オープンソースモデルの使用に伴う共通プライバシーとセキュリティの脅威について概観する。
これらの危険に対する認識を高めることで、私たちはAIシステムの責任と安全な利用を促進することに努めます。
論文 参考訳(メタデータ) (2023-08-18T11:59:15Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Evil from Within: Machine Learning Backdoors through Hardware Trojans [72.99519529521919]
バックドアは、自動運転車のようなセキュリティクリティカルなシステムの整合性を損なう可能性があるため、機械学習に深刻な脅威をもたらす。
私たちは、機械学習のための一般的なハードウェアアクセラレーターに完全に存在するバックドアアタックを導入します。
我々は,Xilinx Vitis AI DPUにハードウェアトロイの木馬を埋め込むことにより,攻撃の実現可能性を示す。
論文 参考訳(メタデータ) (2023-04-17T16:24:48Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。