論文の概要: A Kolmogorov metric embedding for live cell microscopy signaling patterns
- arxiv url: http://arxiv.org/abs/2401.02501v4
- Date: Wed, 05 Feb 2025 14:46:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:25:21.010972
- Title: A Kolmogorov metric embedding for live cell microscopy signaling patterns
- Title(参考訳): カルモゴロフメートル法による生細胞顕微鏡信号パターンの埋め込み
- Authors: Layton Aho, Mark Winter, Marc DeCarlo, Agne Frismantiene, Yannick Blum, Paolo Armando Gagliardi, Olivier Pertz, Andrew R. Cohen,
- Abstract要約: 5-D $(x,yz, channel,time)$Live Cell Microscopy Filmsにおいて,細胞シグナルのパターンをキャプチャするメカニカル埋め込みを提案する。
この埋め込みは、物体間の情報内容の絶対測度であるコルモゴロフ複雑性理論に基づく正規化情報距離(NID)と呼ばれる距離を用いる。
- 参考スコア(独自算出の注目度): 0.1547863211792184
- License:
- Abstract: We present a metric embedding that captures spatiotemporal patterns of cell signaling dynamics in 5-D $(x,y,z,channel,time)$ live cell microscopy movies. The embedding uses a metric distance called the normalized information distance (NID) based on Kolmogorov complexity theory, an absolute measure of information content between digital objects. The NID uses statistics of lossless compression to compute a theoretically optimal metric distance between pairs of 5-D movies, requiring no a priori knowledge of expected pattern dynamics, and no training data. The cell signaling structure function (SSF) is defined using a class of metric 3-D image filters that compute at each spatiotemporal cell centroid the voxel intensity configuration of the nucleus w.r.t. the surrounding cytoplasm, or a functional output e.g. velocity. The only parameter is the expected cell radii ($\mu m$). The SSF can be optionally combined with segmentation and tracking algorithms. The resulting lossless compression pipeline represents each 5-D input movie as a single point in a metric embedding space. The utility of a metric embedding follows from Euclidean distance between any points in the embedding space approximating optimally the pattern difference, as measured by the NID, between corresponding pairs of 5-D movies. This is true throughout the embedding space, not only at points corresponding to input images. Examples are shown for synthetic data, for 2-D+time movies of ERK and AKT signaling under different oncogenic mutations in human epithelial (MCF10A) cells, for 3-D MCF10A spheroids under optogenetic manipulation of ERK, and for ERK dynamics during colony differentiation in human induced pluripotent stem cells.
- Abstract(参考訳): 5-D $(x,y,z, channel,time)$Live Cell Microscopy Filmsにおいて,細胞シグナルの時空間パターンをキャプチャする。
この埋め込みは、デジタルオブジェクト間の情報内容の絶対測度であるコルモゴロフ複雑性理論に基づく正規化情報距離(NID)と呼ばれる距離を用いる。
NIDはロスレス圧縮の統計を用いて、理論上最適な5-Dフィルム間の距離を計算し、予測されるパターンダイナミクスの事前知識は必要とせず、トレーニングデータも必要としない。
細胞シグナリング構造関数(セルシグナリング構造関数、英: cell signaling structure function、SSF)は、周囲の細胞質の核w.r.t.のボクセル強度構成、または機能出力eg速度をそれぞれ表す3次元画像フィルタのクラスを用いて定義される。
唯一のパラメータは、期待されるセルラジイ(\mu m$)である。
SSFは、セグメンテーションと追跡アルゴリズムと任意に組み合わせることができる。
結果として生じるロスレス圧縮パイプラインは、各5次元入力フィルムをメートル埋め込み空間の単一点として表現する。
計量埋め込みの効用は、埋め込み空間内の任意の点間のユークリッド距離から、NIDによって測定されたパターン差を最適に近似する5-Dフィルム間のユークリッド距離から従う。
これは埋め込み空間全体を通して真であり、入力画像に対応する点だけに限らない。
例えば、ヒト上皮細胞(MCF10A)の異なる癌原突然変異下でのERKおよびAKTシグナルの2-D+時間フィルム、ERKのオプトジェネティックな操作による3次元MCF10A球体、およびヒト誘導多能性幹細胞のコロニー分化におけるERKダイナミックスなどである。
関連論文リスト
- EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
実時間電磁伝搬のための新しい機械学習手法(EM-GANSim)を提案する。
実際には、3D屋内環境のあらゆる場所で数ミリ秒で信号強度を計算することができる。
論文 参考訳(メタデータ) (2024-05-27T17:19:02Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and
Applications [7.322121417864824]
我々はゲージ同変畳み込み(GEVNet)と呼ばれるゲージ同変畳み込みの高次一般化を導入する。
これにより、空間的に拡張された非線形相互作用を、大域的等距離と等値性を維持しながら、与えられた場内でモデル化することができる。
神経画像データ実験では、結果として生じる2部構造を用いて、拡散磁気共鳴画像(dMRI)からLewy Body Disease(DLB)、Alzheimer's Disease(AD)、Parkinson's Disease(PD)を自動判別する。
論文 参考訳(メタデータ) (2023-05-26T06:02:31Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
本稿では,空間的および時間的注意を並列に効率的に計算するハイブリッドエンコーダデコーダフレームワークを提案する。
また,ミトコンドリアインスタンスの領域を背景から支援する訓練中に,意味的クラッタ・バックグラウンドの逆行性障害も導入した。
論文 参考訳(メタデータ) (2023-03-21T17:58:49Z) - The Projection-Enhancement Network (PEN) [3.0464385291578973]
サブサンプリングされた3Dデータを処理し、2次元RGBセマンティック圧縮を生成する新しい畳み込みモジュールを提案する。
PENでは、CellPoseで学習した意味表現が深さを符号化し、セグメンテーション性能を大幅に向上することを示す。
我々は、PENをデータ駆動型ソリューションとして、インスタンスセグメンテーションネットワークから2次元セグメンテーションを改善する3次元データの圧縮表現を形成する。
論文 参考訳(メタデータ) (2023-01-26T00:07:22Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context
Aware Pseudocoloring [4.555723508665994]
ボリュームセルセグメンテーションのための小さな畳み込みニューラルネットワーク(CNN)を導入する。
我々のモデルは効率的で非対称なエンコーダ・デコーダ構造を持ち、デコーダにはほとんどパラメータがない。
我々のCNNモデルは,他の上位手法に比べて最大25倍のパラメータ数を持つ。
論文 参考訳(メタデータ) (2022-04-06T18:02:15Z) - Diffusion Earth Mover's Distance and Distribution Embeddings [61.49248071384122]
拡散は$tildeo(n)$ timeで計算でき、ツリーベースのような同様の高速アルゴリズムよりも正確である。
拡散は完全微分可能であり、深層ニューラルネットワークのような勾配拡散フレームワークの将来の使用に適している。
論文 参考訳(メタデータ) (2021-02-25T13:18:32Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
顕微鏡画像における触覚細胞のセグメンテーション法を提案する。
距離マップにインスパイアされた新しい細胞境界の表現を用いることで, 触覚細胞だけでなく, 近接細胞をトレーニングプロセスで利用することができる。
この表現は、特にアノテーションエラーに対して堅牢であり、未表現または未含の細胞型を含むトレーニングデータに含まれる顕微鏡画像のセグメンテーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-03T11:55:28Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
3次元空間で定義された畳み込みカーネルの円筒形表現を利用する学習可能なモジュールである円筒型畳み込みネットワーク(CCN)を導入する。
CCNはビュー固有の畳み込みカーネルを通してビュー固有の特徴を抽出し、各視点におけるオブジェクトカテゴリスコアを予測する。
本実験は,円柱状畳み込みネットワークが関節物体の検出と視点推定に与える影響を実証する。
論文 参考訳(メタデータ) (2020-03-25T10:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。