Zero-shot Microclimate Prediction with Deep Learning
- URL: http://arxiv.org/abs/2401.02665v1
- Date: Fri, 5 Jan 2024 06:46:56 GMT
- Title: Zero-shot Microclimate Prediction with Deep Learning
- Authors: Iman Deznabi, Peeyush Kumar, Madalina Fiterau
- Abstract summary: We propose a novel zero-shot learning approach designed to forecast various climate measurements at new and unmonitored locations.
Our method surpasses conventional weather forecasting techniques in predicting microclimate variables by leveraging knowledge extracted from other geographic locations.
- Score: 5.335262943835543
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Weather station data is a valuable resource for climate prediction, however,
its reliability can be limited in remote locations. To compound the issue,
making local predictions often relies on sensor data that may not be accessible
for a new, previously unmonitored location. In response to these challenges, we
propose a novel zero-shot learning approach designed to forecast various
climate measurements at new and unmonitored locations. Our method surpasses
conventional weather forecasting techniques in predicting microclimate
variables by leveraging knowledge extracted from other geographic locations.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Predicting unobserved climate time series data at distant areas via spatial correlation using reservoir computing [5.008022566317949]
This study focuses on a prediction of climatic elements, specifically near-surface temperature and pressure, at a target location apart from a data observation point.
Our results show that the accuracy of the predictions degrades with the distance between the observation and target locations.
arXiv Detail & Related papers (2024-06-05T08:39:10Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Transferring climate change knowledge [0.15742383563959128]
We show that Machine Learning can be used to optimally leverage and merge the knowledge gained from Earth system models simulations and historical observations.
We reach an uncertainty reduction of more than 50% with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2023-09-26T09:24:53Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Decadal Temperature Prediction via Chaotic Behavior Tracking [15.190757020779419]
Decadal temperature prediction provides crucial information for quantifying the expected effects of future climate changes.
We devise a novel prediction method involving an information tracking mechanism that aims to track and adapt to changes in temperature dynamics.
Our results show the ability of our method to accurately predict global land-surface temperatures over a decadal range.
arXiv Detail & Related papers (2023-04-19T09:56:46Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Intelligent Spatial Interpolation-based Frost Prediction Methodology
using Artificial Neural Networks with Limited Local Data [3.3607307817827032]
The aim of this article is to eliminate the dependency on on-site historical data and sensors for frost prediction methods.
The models use climate data from existing weather stations, digital elevation models surveys, and normalized difference vegetation index data to estimate a target site's next hour minimum temperature.
arXiv Detail & Related papers (2022-04-15T21:14:07Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.