論文の概要: Missing Value Chain in Generative AI Governance China as an example
- arxiv url: http://arxiv.org/abs/2401.02799v1
- Date: Fri, 5 Jan 2024 13:28:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 15:19:48.749455
- Title: Missing Value Chain in Generative AI Governance China as an example
- Title(参考訳): 生成型aiガバナンス中国におけるバリューチェーンの欠如
- Authors: Yulu Pi
- Abstract要約: 中国は2023年8月に第1次人工知能サービス臨時行政措置を施行した。
測定は、生成AIの価値連鎖における異なる役割に関する明確な区別を提示する。
AIバリューチェーン内の異なるプレイヤー間の区別と明確な法的地位の欠如は、重大な結果をもたらす可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examined the world's first regulation on Generative AI, China's
Provisional Administrative Measures of Generative Artificial Intelligence
Services, which came into effect in August 2023. Our assessment reveals that
the Measures, while recognizing the technical advances of generative AI and
seeking to govern its full life cycle, presents unclear distinctions regarding
different roles in the value chain of Generative AI including upstream
foundation model providers and downstream deployers. The lack of distinction
and clear legal status between different players in the AI value chain can have
profound consequences. It can lead to ambiguity in accountability, potentially
undermining the governance and overall success of AI services.
- Abstract(参考訳): 我々は,2023年8月に施行された,中国の生成人工知能臨時行政措置である生成AIに関する世界最初の規制について検討した。
本評価では,生成型aiの技術的進歩を認識し,そのライフサイクル全体を支配しようとする一方で,上流のファウンデーションモデルプロバイダや下流の展開者を含む生成型aiのバリューチェーンにおける役割の相違を明らかにする。
AIバリューチェーン内の異なるプレイヤー間の区別と明確な法的地位の欠如は、重大な結果をもたらす可能性がある。
説明責任の曖昧さを招き、AIサービスのガバナンスと全体的な成功を損なう可能性がある。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - AI Governance and Accountability: An Analysis of Anthropic's Claude [0.0]
本稿では,基本的AIモデルであるArthropicのClaudeに着目し,AIガバナンスの展望について考察する。
我々は、NIST AI Risk Management FrameworkとEU AI Actのレンズを通してCludeを分析し、潜在的な脅威を特定し、緩和戦略を提案する。
論文 参考訳(メタデータ) (2024-05-02T23:37:06Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - The European AI Liability Directives -- Critique of a Half-Hearted
Approach and Lessons for the Future [0.0]
欧州委員会は2022年9月に、欧州のAI責任に対するアプローチを概説する2つの提案を推進した。
後者は、影響を受けた人の個人的権利を一切含んでおらず、前者は、AI開発と展開に関する特定の実質的なルールを欠いている。
これらの行為は、AI規制におけるブリュッセル効果を誘発する可能性がある。
我々は、AI法における持続可能性影響評価と、債務制度における持続可能な設計欠陥を通じて、持続可能なAI規制を飛躍的に開始することを提案する。
論文 参考訳(メタデータ) (2022-11-25T09:08:11Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
このエッセイは、下流のタスクに活用可能なポリシーデータの構造を学ぶAIの研究の概要を概説する。
これはAIとポリシーの"理解"フェーズを表していると私たちは考えていますが、AIを整合させるために人的価値の重要な源としてポリシーを活用するには、"理解"ポリシーが必要です。
論文 参考訳(メタデータ) (2022-06-25T21:31:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
AIシステムの開発と利用を目標とする,AIガバナンスフレームワークを提案する。
このフレームワークは、AIシステムをデプロイする組織が倫理的AI原則を実践に翻訳するのを助けるように設計されている。
論文 参考訳(メタデータ) (2022-06-01T08:55:27Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。