Blending Is All You Need: Cheaper, Better Alternative to
Trillion-Parameters LLM
- URL: http://arxiv.org/abs/2401.02994v3
- Date: Tue, 23 Jan 2024 04:43:56 GMT
- Title: Blending Is All You Need: Cheaper, Better Alternative to
Trillion-Parameters LLM
- Authors: Xiaoding Lu, Zongyi Liu, Adian Liusie, Vyas Raina, Vineet Mudupalli,
Yuwen Zhang, William Beauchamp
- Abstract summary: This study explores the question: Can a combination of smaller models collaboratively achieve comparable or enhanced performance relative to a singular large model?
We introduce an approach termed "blending", a straightforward yet effective method of integrating multiple chat AIs.
For instance, integrating just three models of moderate size (6B/13B paramaeters) can rival or even surpass the performance metrics of a substantially larger model like ChatGPT (175B+ paramaters)
- Score: 9.340519360486924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In conversational AI research, there's a noticeable trend towards developing
models with a larger number of parameters, exemplified by models like ChatGPT.
While these expansive models tend to generate increasingly better chat
responses, they demand significant computational resources and memory. This
study explores a pertinent question: Can a combination of smaller models
collaboratively achieve comparable or enhanced performance relative to a
singular large model? We introduce an approach termed "blending", a
straightforward yet effective method of integrating multiple chat AIs. Our
empirical evidence suggests that when specific smaller models are
synergistically blended, they can potentially outperform or match the
capabilities of much larger counterparts. For instance, integrating just three
models of moderate size (6B/13B paramaeters) can rival or even surpass the
performance metrics of a substantially larger model like ChatGPT (175B+
paramaters). This hypothesis is rigorously tested using A/B testing
methodologies with a large user base on the Chai research platform over a span
of thirty days. The findings underscore the potential of the "blending"
strategy as a viable approach for enhancing chat AI efficacy without a
corresponding surge in computational demands.
Related papers
- What Matters for Model Merging at Scale? [94.26607564817786]
Model merging aims to combine multiple expert models into a more capable single model.
Previous studies have primarily focused on merging a few small models.
This study systematically evaluates the utility of model merging at scale.
arXiv Detail & Related papers (2024-10-04T17:17:19Z) - HM3: Heterogeneous Multi-Class Model Merging [0.0]
We explore training-free model merging techniques to consolidate auxiliary guard-rail models into a single, multi-functional model.
We propose Heterogeneous Multi-Class Model Merging (HM3) as a simple technique for merging multi-class classifiers with heterogeneous label spaces.
We report promising results for merging BERT-based guard models, some of which attain an average F1-score higher than the source models while reducing the inference time by up to 44%.
arXiv Detail & Related papers (2024-09-27T22:42:45Z) - Brainstorming Brings Power to Large Language Models of Knowledge Reasoning [17.14501985068287]
Large Language Models (LLMs) have demonstrated amazing capabilities in language generation, text comprehension, and knowledge reasoning.
Recent studies have further improved the model's reasoning ability on a wide range of tasks by introducing multi-model collaboration.
We propose the multi-model brainstorming based on prompt. It incorporates different models into a group for brainstorming, and after multiple rounds of reasoning elaboration and re-inference, a consensus answer is reached.
arXiv Detail & Related papers (2024-06-02T14:47:14Z) - Tiny Models are the Computational Saver for Large Models [1.8350044465969415]
This paper introduces TinySaver, an early-exit-like dynamic model compression approach which employs tiny models to substitute large models adaptively.
Our evaluation of this approach in ImageNet-1k classification demonstrates its potential to reduce the number of compute operations by up to 90%, with only negligible losses in performance.
arXiv Detail & Related papers (2024-03-26T14:14:30Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth.
We show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity.
Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.
arXiv Detail & Related papers (2023-06-15T10:48:59Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Fast and More Powerful Selective Inference for Sparse High-order
Interaction Model [17.549975092550074]
We consider Sparse High-order Interaction Model (SHIM) in this study.
Finding statistically significant high-order interactions is challenging due to intrinsic high dimensionality of the effects.
Our main contribution is to extend the recently developed parametric programming approach for selective inference to high-order interaction models.
arXiv Detail & Related papers (2021-06-09T09:22:42Z) - Exploring Sparse Expert Models and Beyond [51.90860155810848]
Mixture-of-Experts (MoE) models can achieve promising results with outrageous large amount of parameters but constant computation cost.
We propose a simple method called expert prototyping that splits experts into different prototypes and applies $k$ top-$1$ routing.
This strategy improves the model quality but maintains constant computational costs, and our further exploration on extremely large-scale models reflects that it is more effective in training larger models.
arXiv Detail & Related papers (2021-05-31T16:12:44Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.