論文の概要: Coherent errors in stabilizer codes caused by quasistatic phase damping
- arxiv url: http://arxiv.org/abs/2401.04530v3
- Date: Thu, 18 Jul 2024 07:09:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 21:41:25.915358
- Title: Coherent errors in stabilizer codes caused by quasistatic phase damping
- Title(参考訳): 擬似位相減衰による安定化符号のコヒーレント誤差
- Authors: Dávid Pataki, Áron Márton, János K. Asbóth, András Pályi,
- Abstract要約: 本稿では,1/f雑音によるラーモア周波数変動の影響について,より微妙な誤差モデルである擬似位相減衰を導入する。
擬似位相減衰と読み出し誤差の存在下で,誤差閾値の数値的証拠を提供する。
スピン量子ビットおよび超伝導量子ビットに対する結果の影響について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction is a key challenge for the development of practical quantum computers, a direction in which significant experimental progress has been made in recent years. In solid-state qubits, one of the leading information loss mechanisms is dephasing, usually modelled by phase flip errors. Here, we introduce quasistatic phase damping, a more subtle error model which describes the effect of Larmor frequency fluctuations due to 1/f noise. We show how this model is different from a simple phase flip error model, in terms of multi-cycle error correction. Considering the surface code, we provide numerical evidence for an error threshold, in the presence of quasistatic phase damping and readout errors. We discuss the implications of our results for spin qubits and superconducting qubits.
- Abstract(参考訳): 量子誤り訂正は、近年大きな実験的進歩を遂げている現実的な量子コンピュータの開発において重要な課題である。
固体量子ビットでは、主要な情報損失機構の一つが強調され、通常位相フリップエラーによってモデル化される。
本稿では,1/f雑音によるラーモア周波数変動の影響を記述した,より微妙な誤差モデルである擬似位相減衰を導入する。
多サイクル誤差補正の観点から、このモデルが単純な位相反転誤差モデルとどのように異なるかを示す。
表面符号を考慮すると、擬似位相減衰と読み出し誤差の存在下で、誤差閾値の数値的証拠を提供する。
スピン量子ビットおよび超伝導量子ビットに対する結果の影響について論じる。
関連論文リスト
- Perturbative stability and error correction thresholds of quantum codes [0.029541734875307393]
位相的に順序付けられた位相は局所摂動に対して安定であり、位相的量子誤り訂正符号は局所誤差に対するしきい値を持つ。
汎用CSS符号と古典線形符号を復号するための古典統計力学モデルを構築した。
LDPC条件を満たすCSS符号に対して,低温秩序相の存在を証明した。
論文 参考訳(メタデータ) (2024-06-22T06:46:41Z) - Error-resilience Phase Transitions in Encoding-Decoding Quantum Circuits [0.0]
局所的コヒーレントおよび非コヒーレントな誤りを考慮した符号化・復号ランダム回路のクラスについて検討する。
我々は,誤差保護相から誤り回避相への相転移の存在を解析的に実証した。
論文 参考訳(メタデータ) (2023-08-11T18:00:02Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
量子揺らぎは同期の出現を妨げるが、完全に抑制するわけではない。
モデルパラメータへの依存を強調して,臨界結合の解析式を導出する。
論文 参考訳(メタデータ) (2023-06-16T16:41:16Z) - Simplest fidelity-estimation method for graph states with depolarizing
noise [0.0]
ノイズを位相フリップ誤差としてモデル化することができれば,一つの測定値が十分であることを示す。
また、位相フリップと非偏極雑音を補間するノイズモデルについて、最も単純な手法を数値的に評価する。
論文 参考訳(メタデータ) (2023-04-21T13:46:41Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
トポロジカル・サーフェス・コードに着目し,マルチビット・エンタングルメント・ゲート上のノイズとコヒーレント・ノイズの両方に悩まされている場合について検討する。
我々は、このような避けられないコヒーレントエラーがエラー訂正性能に致命的な影響を及ぼす可能性があると結論付けた。
論文 参考訳(メタデータ) (2023-01-30T13:12:41Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
本研究では, 散逸安定化された猫量子ビットの誤差補正性能について検討し, 解析を行った。
その結果, ビットフリップ誤り率の適度なスキューズでは, 位相フリップ率を一定に保ちながら, 通常のキャットキュービットに比べて有意に低下することがわかった。
論文 参考訳(メタデータ) (2022-10-24T16:02:20Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fundamental thresholds of realistic quantum error correction circuits
from classical spin models [0.0]
モンテカルロシミュレーションを用いて、関連する相互作用スピンモデルの位相図を解析する。
提案手法は,特定の復号化戦略とは無関係に,QEC符号と関連する読み出し回路の基本しきい値を評価するための手段を提供する。
論文 参考訳(メタデータ) (2021-04-10T19:26:37Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。