論文の概要: CAT-LLM: Style-enhanced Large Language Models with Text Style Definition for Chinese Article-style Transfer
- arxiv url: http://arxiv.org/abs/2401.05707v2
- Date: Fri, 06 Jun 2025 09:55:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.576912
- Title: CAT-LLM: Style-enhanced Large Language Models with Text Style Definition for Chinese Article-style Transfer
- Title(参考訳): CAT-LLM:中国語記事転送のためのテキストスタイル定義付きスタイル強化大言語モデル
- Authors: Zhen Tao, Dinghao Xi, Zhiyu Li, Liumin Tang, Wei Xu,
- Abstract要約: 複雑な中国語長文におけるスタイル転送の課題に対処する中国語記事スタイル転送(CAT-LLM)フレームワークを提案する。
Cat-LLMは、記事スタイルを分析し、モデル化するための機械学習アルゴリズムを統合する、bespoke pluggable Text Style Definition (TSD)モジュールを備えている。
内部スタイルツリーの動的拡張をサポートし、新しい多様なスタイル定義をシームレスに組み込むことができる。
- 参考スコア(独自算出の注目度): 9.346955510106403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text style transfer plays a vital role in online entertainment and social media. However, existing models struggle to handle the complexity of Chinese long texts, such as rhetoric, structure, and culture, which restricts their broader application. To bridge this gap, we propose a Chinese Article-style Transfer (CAT-LLM) framework, which addresses the challenges of style transfer in complex Chinese long texts. At its core, CAT-LLM features a bespoke pluggable Text Style Definition (TSD) module that integrates machine learning algorithms to analyze and model article styles at both word and sentence levels. This module acts as a bridge, enabling LLMs to better understand and adapt to the complexities of Chinese article styles. Furthermore, it supports the dynamic expansion of internal style trees, enabling the framework to seamlessly incorporate new and diverse style definitions, enhancing adaptability and scalability for future research and applications. Additionally, to facilitate robust evaluation, we created ten parallel datasets using a combination of ChatGPT and various Chinese texts, each corresponding to distinct writing styles, significantly improving the accuracy of the model evaluation and establishing a novel paradigm for text style transfer research. Extensive experimental results demonstrate that CAT-LLM, combined with GPT-3.5-Turbo, achieves state-of-the-art performance, with a transfer accuracy F1 score of 79.36% and a content preservation F1 score of 96.47% on the "Fortress Besieged" dataset. These results highlight CAT-LLM's innovative contributions to style transfer research, including its ability to preserve content integrity while achieving precise and flexible style transfer across diverse Chinese text domains. Building on these contributions, CAT-LLM presents significant potential for advancing Chinese digital media and facilitating automated content creation.
- Abstract(参考訳): テキストスタイルの転送は、オンラインエンターテイメントやソーシャルメディアにおいて重要な役割を果たす。
しかし、既存のモデルは、修辞学、構造学、文化といった中国の長文の複雑さを扱うのに苦労し、より広範な適用を制限する。
このギャップを埋めるために、複雑な中国語長文におけるスタイル転送の課題に対処する中国語記事スタイル転送(CAT-LLM)フレームワークを提案する。
CAT-LLMの中核となるのは、単語と文レベルの両方で記事スタイルを分析しモデル化するための機械学習アルゴリズムを統合する、bespoke pluggable Text Style Definition (TSD)モジュールである。
このモジュールはブリッジとして機能し、LLMが中国の記事スタイルの複雑さをよりよく理解し、適応できるようにする。
さらに、内部スタイルツリーの動的拡張をサポートし、新しい多様なスタイル定義をシームレスに組み込むことができ、将来の研究やアプリケーションへの適応性とスケーラビリティを向上させることができる。
さらに、ロバストな評価を容易にするために、ChatGPTと各種漢文の組み合わせを用いて10個の並列データセットを作成し、それぞれが異なる書体スタイルに対応し、モデル評価の精度を大幅に向上し、テキストスタイル転送研究の新しいパラダイムを確立した。
GPT-3.5-Turboと組み合わせたCAT-LLMは、転送精度F1スコアが79.36%、コンテンツ保存F1スコアが96.47%で、最先端のパフォーマンスを達成している。
これらの結果は、CAT-LLMのスタイル変換研究への革新的な貢献を強調しており、内容の整合性を維持しつつ、さまざまな中国語のテキストドメイン間で正確で柔軟なスタイル転送を実現している。
これらの貢献に基づいて、CAT-LLMは中国のデジタルメディアを前進させ、コンテンツの自動作成を促進する大きな可能性を示している。
関連論文リスト
- Bridging the Linguistic Divide: A Survey on Leveraging Large Language Models for Machine Translation [33.08089616645845]
大規模言語モデル(LLM)の出現は機械翻訳(MT)の景観を大きく変えた。
我々は、アンダーリソース設定への効果的な適応を可能にする、少数ショットプロンプト、クロスランガル転送、パラメータ効率の微調整などの手法を解析する。
幻覚, 評価の不整合, 遺伝バイアスなどの持続的課題について検討するとともに, 翻訳品質向上のためのLCM駆動メトリクスの評価を行った。
論文 参考訳(メタデータ) (2025-04-02T17:26:40Z) - LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
LUSIFERは,LLMをベースとした多言語タスクの埋め込みモデルに,多言語監視を必要とせずに適用可能なゼロショット方式である。
LUSIFERのアーキテクチャは多言語エンコーダを組み、言語ユニバーサル学習者として機能し、埋め込み固有のタスクに最適化されたLLMベースの埋め込みモデルと組み合わせている。
5つの主要な埋め込みタスク、123の多様なデータセット、14言語にわたるカバレッジを含む新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-01T15:43:07Z) - Chunk-Distilled Language Modeling [25.238256586953487]
Chunk-Distilled Language Modeling (CD-LM)は、現在の大規模言語モデル(LLM)における2つの課題に対処するテキスト生成のアプローチである。
提案手法は,ディープネットワークベースのLCMと簡単な検索モジュールを組み合わせることで,単一のデコードステップでマルチトークンテキストチャンクを生成する。
論文 参考訳(メタデータ) (2024-12-31T08:32:15Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - Towards Visual Text Design Transfer Across Languages [49.78504488452978]
マルチモーダル・スタイル翻訳(MuST-Bench)の新たな課題について紹介する。
MuST-Benchは、視覚テキスト生成モデルが様々な書き込みシステム間で翻訳を行う能力を評価するために設計されたベンチマークである。
そこで我々は,スタイル記述の必要性を解消する多モーダルなスタイル翻訳フレームワークであるSIGILを紹介した。
論文 参考訳(メタデータ) (2024-10-24T15:15:01Z) - AnyTrans: Translate AnyText in the Image with Large Scale Models [88.5887934499388]
本稿では、画像中のタスク翻訳AnyText(TATI)のためのオール・エンコンパス・フレームワークであるAnyTransを紹介する。
我々のフレームワークは、翻訳中にテキスト要素と視覚要素の両方から文脈的手がかりを取り入れている。
6つの言語対の多言語テキスト画像翻訳データからなるMTIT6というテストデータセットを精巧にコンパイルした。
論文 参考訳(メタデータ) (2024-06-17T11:37:48Z) - CUDRT: Benchmarking the Detection Models of Human vs. Large Language Models Generated Texts [9.682499180341273]
大規模言語モデル(LLM)は、産業全体にわたってテキスト生成を大幅に強化した。
彼らの人間的なアウトプットは、人間とAIの作者の区別を困難にしている。
現在のベンチマークは主に静的データセットに依存しており、モデルベースの検出器の評価の有効性を制限している。
論文 参考訳(メタデータ) (2024-06-13T12:43:40Z) - Are Large Language Models Actually Good at Text Style Transfer? [0.17751300245073598]
テキストスタイル転送(TST)を用いた大規模言語モデル(LLM)の性能解析を行う。
TSTは、中核的な内容を保持しながら、テキストの言語スタイルを変更することを含む。
我々は、ゼロショットと少数ショットのプロンプトと、公開されているデータセットに対するパラメータ効率の微調整を用いて、事前訓練されたLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-09T18:45:41Z) - Dynamic data sampler for cross-language transfer learning in large language models [34.464472766868106]
ChatFlowは、言語間移動に基づく大規模言語モデル(LLM)である。
我々は、LLaMA2モデルを継続的に訓練するために、中国語、英語、並列コーパスを組み合わせています。
実験により,本手法はモデル収束を加速し,優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2024-05-17T08:40:51Z) - PSST: A Benchmark for Evaluation-driven Text Public-Speaking Style Transfer [16.07576878783396]
公的なテキストを公用語に変換することを目的とした,PSST(Public-Speaking Style Transfer)という新しいタスクを導入する。
言語学的観点からの実世界のデータ分析に基礎を置き、公用語のスタイルを重要なサブスタイルに分解する。
そこで本研究では,その特徴を分析し,スタイリングされたテキストの問題点を特定するための,きめ細かい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-14T18:50:51Z) - One-for-All: Towards Universal Domain Translation with a Single StyleGAN [86.33216867136639]
視覚的に異なる領域間の表現を変換するための新しい翻訳モデルUniTranslatorを提案する。
提案したUniTranslatorは汎用的で、スタイルミキシング、スタイリゼーション、翻訳など様々なタスクを実行できる。
UniTranslatorは、既存の汎用モデルの性能を超越し、代表タスクの特殊モデルに対してよく機能する。
論文 参考訳(メタデータ) (2023-10-22T08:02:55Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
本論文では,自然言語を用いて抽象芸術スタイルを記述するスタイル転送手法であるStylerDALLEを提案する。
具体的には、非自己回帰的なトークンシーケンス変換として、言語誘導型転送タスクを定式化する。
スタイル情報を組み込むために,CLIPに基づく言語指導による強化学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-16T12:44:44Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained
Text Style Transfer [119.70961704127157]
近年,非並列テキストスタイルの転送が研究の関心を集めている。
現在のアプローチでは、元の文の内容やロジックを保存できない。
文を言語グラフとしてモデル化し,グラフレベルで特徴抽出とスタイル転送を行う,グラフトランスフォーマーベースのAuto-GTAEを提案する。
論文 参考訳(メタデータ) (2021-02-01T11:08:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。