The inverse Mpemba effect demonstrated on a single trapped ion qubit
- URL: http://arxiv.org/abs/2401.05830v2
- Date: Sun, 12 May 2024 10:08:33 GMT
- Title: The inverse Mpemba effect demonstrated on a single trapped ion qubit
- Authors: Shahaf Aharony Shapira, Yotam Shapira, Jovan Markov, Gianluca Teza, Nitzan Akerman, Oren Raz, Roee Ozeri,
- Abstract summary: We propose a quantum analog of the Mpemba effect, on the simplest quantum system, a qubit.
We show it exhibits an inverse effect, in which a cold qubit reaches a hot temperature faster than a hot qubit.
In our system a cold qubit can heat up exponentially faster, manifesting the strong version of the effect.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Mpemba effect is a counter-intuitive phenomena in which a hot system reaches a cold temperature faster than a colder system, under otherwise identical conditions. Here we propose a quantum analog of the Mpemba effect, on the simplest quantum system, a qubit. Specifically, we show it exhibits an inverse effect, in which a cold qubit reaches a hot temperature faster than a hot qubit. Furthermore, in our system a cold qubit can heat up exponentially faster, manifesting the strong version of the effect. This occurs only for sufficiently coherent systems, making this effect quantum mechanical, i.e. due to interference effects. We experimentally demonstrate our findings on a single $^{88}\text{Sr}^+$ trapped ion qubit. The existence of this anomalous relaxation effect in simple quantum systems reveals its fundamentality, and may have a role in designing and operating quantum information processing devices.
Related papers
- Observation of quantum strong Mpemba effect [11.375210055373365]
We report the first experiment, as far as we know,about the strong Mpemba effect in a single trapped ion system.
Our work provides an efficient strategy to exponentially accelerate relaxations of quantum system to their stationary state.
It could open up the door to engineer a wide range of dissipative quantum systems.
arXiv Detail & Related papers (2024-01-29T08:25:34Z) - Quantum Mpemba effect in a quantum dot with reservoirs [0.0]
We show that the system temperatures starting from two different initial values, cross each other at finite time to generate thermal quantam Mpemba effect.
The slowest relaxation mode believed to play the dominating role in Mpemba effect in Markovian systems, does not contribute to such anomalous relaxation in the present model.
arXiv Detail & Related papers (2023-04-05T12:42:46Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Many-body enhancement in a spin-chain quantum heat engine [0.0]
We show that ferromagnetic interactions can enhance the adiabatic performance of a quantum spin chain engine at low temperatures.
The enhancement in work output is particular pronounced, increasing exponentially with interaction strength.
We identify an approximate, experimentally realisable counterdiabatic drive that can mitigate friction for weak interactions.
arXiv Detail & Related papers (2023-02-03T08:05:50Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Quantum signatures in quadratic optomechanical heat engine with an atom
in a tapered trap [0.0]
We investigate how quantum signatures can emerge in a single atom heat engine consisting of an atom confined in a tapered trap.
We model such a system using a quadratic optomechanical model and identify an effective Otto cycle in the system's dynamics.
arXiv Detail & Related papers (2021-11-24T21:24:21Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Reservoir engineering with arbitrary temperatures for spin systems and
quantum thermal machine with maximum efficiency [50.591267188664666]
Reservoir engineering is an important tool for quantum information science and quantum thermodynamics.
We employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system.
arXiv Detail & Related papers (2020-01-28T00:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.