論文の概要: UAV-Borne Mapping Algorithms for Low-Altitude and High-Speed Drone Applications
- arxiv url: http://arxiv.org/abs/2401.06407v2
- Date: Fri, 29 Mar 2024 18:02:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 14:25:45.416878
- Title: UAV-Borne Mapping Algorithms for Low-Altitude and High-Speed Drone Applications
- Title(参考訳): 低高度・高速ドローン用UAVボーンマッピングアルゴリズム
- Authors: Jincheng Zhang, Artur Wolek, Andrew R. Willis,
- Abstract要約: 本稿では,現状のセンサとUAV(Unmanned Aerial Vehicle)アプリケーションのためのマッピングアルゴリズムについて述べる。
新しい実験構造は、AirSimシミュレータとGoogle 3Dマップモデルを統合することで実現可能な、非常に現実的な環境を用いて作成される。
- 参考スコア(独自算出の注目度): 0.4681661603096333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents an analysis of current state-of-the-art sensors and how these sensors work with several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications, focusing on low-altitude and high-speed scenarios. A new experimental construct is created using highly realistic environments made possible by integrating the AirSim simulator with Google 3D maps models using the Cesium Tiles plugin. Experiments are conducted in this high-realism simulated environment to evaluate the performance of three distinct mapping algorithms: (1) Direct Sparse Odometry (DSO), (2) Stereo DSO (SDSO), and (3) DSO Lite (DSOL). Experimental results evaluate algorithms based on their measured geometric accuracy and computational speed. The results provide valuable insights into the strengths and limitations of each algorithm. Findings quantify compromises in UAV algorithm selection, allowing researchers to find the mapping solution best suited to their application, which often requires a compromise between computational performance and the density and accuracy of geometric map estimates. Results indicate that for UAVs with restrictive computing resources, DSOL is the best option. For systems with payload capacity and modest compute resources, SDSO is the best option. If only one camera is available, DSO is the option to choose for applications that require dense mapping results.
- Abstract(参考訳): 本稿では、現状のセンサと、これらのセンサがUAV(Unmanned Aerial Vehicle)アプリケーションのためのいくつかのマッピングアルゴリズムでどのように機能するかを、低高度および高速シナリオに焦点をあてて分析する。
AirSimシミュレータとGoogle 3DマップモデルをCesium Tilesプラグインを使って統合することで実現した、非常に現実的な環境を用いて、新しい実験的な構成が作成される。
1)DSO(Direct Sparse Odometry)、(2)SDSO(Stereo DSO)、(3)DSOL(DSO Lite)の3つの異なるマッピングアルゴリズムの性能を評価するために,この高現実性シミュレーション環境で実験を行った。
実験結果は, 測定された幾何精度と計算速度に基づいて, アルゴリズムの評価を行った。
結果は各アルゴリズムの強みと限界について貴重な洞察を与える。
探索はUAVアルゴリズムの選択における妥協を定量化し、研究者はアプリケーションに最も適したマッピングソリューションを見つけることができる。
計算資源が制限されたUAVでは,DSOLが最良であることを示す。
ペイロード容量と控えめな計算資源を持つシステムでは、SDSOが最良の選択肢である。
1台のカメラしか使えない場合、DSOは密集したマッピング結果を必要とするアプリケーションを選択するオプションである。
関連論文リスト
- Shrinking POMCP: A Framework for Real-Time UAV Search and Rescue [10.399964979693996]
本稿では,UAVによる周辺地域の捜索救助活動の最適化に包括的アプローチを提案する。
経路計画問題は部分的に観測可能なマルコフ決定過程(POMDP)として定式化される
本稿では,時間制約に対処する新しいShrinking POMCP'アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-20T01:41:29Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
実世界の現実的な都市地図とオープンなデータソースからの航空画像とともに、シミュレーションされた経路損失無線マップのデータセットをリリースする。
モデルアーキテクチャ,入力特徴設計,航空画像からの無線マップの推定に関する実験を行った。
論文 参考訳(メタデータ) (2024-01-12T14:56:45Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Are we ready for beyond-application high-volume data? The Reeds robot
perception benchmark dataset [3.781421673607643]
本稿ではロボット認識アルゴリズムの研究のためにReedsと呼ばれるデータセットを提案する。
このデータセットは、アプリケーション固有のソリューションをテストする環境を提供するのではなく、アルゴリズムに要求されるベンチマーク機会を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-16T23:21:42Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization [5.076419064097734]
本稿では,無人航空機(UAV)の経路計画問題に対処するため,球面ベクトルベース粒子群最適化 (SPSO) という新しいアルゴリズムを提案する。
コスト関数が最初に定式化され、経路計画がUAVの実用的で安全な運用に必要な要件と制約を組み込んだ最適化問題に変換される。
SPSOは、UAVの構成空間を効率的に探索することでコスト関数を最小化する最適経路を見つけるために使用される。
論文 参考訳(メタデータ) (2021-04-13T06:45:11Z) - Motion-Encoded Particle Swarm Optimization for Moving Target Search
Using UAVs [4.061135251278187]
本稿では,無人航空機(UAV)を用いた移動目標探索のための動き符号化粒子群最適化(MPSO)という新しいアルゴリズムを提案する。
提案するMPSOは,PSOアルゴリズムで粒子生成に進化する一連のUAV運動経路として探索軌道を符号化することにより,その問題を解決するために開発された。
既存手法による広範囲なシミュレーションの結果,提案手法は検出性能を24%,時間性能を4.71倍改善した。
論文 参考訳(メタデータ) (2020-10-05T14:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。