論文の概要: Quantum Generative Diffusion Model: A Fully Quantum-Mechanical Model for Generating Quantum State Ensemble
- arxiv url: http://arxiv.org/abs/2401.07039v3
- Date: Thu, 11 Jul 2024 05:46:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:27:37.515966
- Title: Quantum Generative Diffusion Model: A Fully Quantum-Mechanical Model for Generating Quantum State Ensemble
- Title(参考訳): 量子生成拡散モデル:量子状態アンサンブル生成のための完全量子力学モデル
- Authors: Chuangtao Chen, Qinglin Zhao, MengChu Zhou, Zhimin He, Zhili Sun, Haozhen Situ,
- Abstract要約: 本稿では,量子生成拡散モデル (QGDM) を単純かつエレガントな量子モデルとして紹介する。
QGDMはQGAN(Quantum Generative Adversarial Network)よりも高速な収束を示す
混合状態発生ではQGANよりも53.02%高い忠実性が得られる。
- 参考スコア(独自算出の注目度): 40.06696963935616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical diffusion models have shown superior generative results. Exploring them in the quantum domain can advance the field of quantum generative learning. This work introduces Quantum Generative Diffusion Model (QGDM) as their simple and elegant quantum counterpart. Through a non-unitary forward process, any target quantum state can be transformed into a completely mixed state that has the highest entropy and maximum uncertainty about the system. A trainable backward process is used to recover the former from the latter. The design requirements for its backward process includes non-unitarity and small parameter count. We introduce partial trace operations to enforce non-unitary and reduce the number of trainable parameters by using a parameter-sharing strategy and incorporating temporal information as an input in the backward process. We present QGDM's resource-efficient version to reduce auxiliary qubits while preserving generative capabilities. QGDM exhibits faster convergence than Quantum Generative Adversarial Network (QGAN) because its adopted convex-based optimization can result in faster convergence. The results of comparing it with QGAN demonstrate its effectiveness in generating both pure and mixed quantum states. It can achieve 53.02% higher fidelity in mixed-state generation than QGAN. The results highlight its great potential to tackle challenging quantum generation tasks.
- Abstract(参考訳): 古典的な拡散モデルは優れた生成結果を示している。
量子領域でそれらを探索することは、量子生成学習の分野を前進させる可能性がある。
この研究は、単純でエレガントな量子対向体として量子生成拡散モデル(QGDM)を導入している。
非単体フォワードプロセスにより、任意の標的量子状態は、システムに関する最も高いエントロピーと最大の不確実性を持つ完全に混合状態に変換することができる。
トレーニング可能な後方プロセスを使用して、後者から前者を回復する。
後方プロセスの設計要件には、非ユニタリティと小さなパラメータカウントが含まれる。
パラメータ共有戦略を用い,時間情報を入力として後進プロセスに組み込むことにより,非単元演算を導入し,トレーニング可能なパラメータの数を減らし,部分トレース処理を導入する。
生成能力を保ちながら補助量子ビットを削減するため,QGDMの資源効率向上版を提案する。
QGDMは量子生成逆数ネットワーク(QGAN)よりも高速な収束を示す。
QGANと比較した結果、純量子状態と混合量子状態の両方を生成する効果が示された。
混合状態発生ではQGANよりも53.02%高い忠実性が得られる。
その結果は、量子生成タスクに挑戦する大きな可能性を浮き彫りにした。
関連論文リスト
- Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
量子源からのエネルギー抽出は、量子電池のような新しい量子デバイスを開発するための重要なタスクである。
量子源からエネルギーを完全に抽出する主な問題は、任意のユニタリ演算をシステム上で行うことができるという仮定である。
本稿では,変分量子固有解法(VQE)アルゴリズムにインスパイアされた抽出可能エネルギーの最適化手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T15:59:54Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
量子相関を用いて古典的VAEの忠実度を向上させる量子強化型VAE(QeVAE)を提案する。
経験的に、QeVAEは量子状態のいくつかのクラスにおいて古典的モデルよりも優れていることを示す。
我々の研究は、量子生成学習アルゴリズムの新しい応用の道を開いた。
論文 参考訳(メタデータ) (2023-05-02T16:50:24Z) - Simulating non-unitary dynamics using quantum signal processing with
unitary block encoding [0.0]
我々は、資源フルーガル量子信号処理の最近の進歩に適応し、量子コンピュータ上での非一元的想像時間進化を探求する。
所望の仮想時間発展状態の回路深度を最適化する手法と,その実現可能性を試行する。
非単体力学のQET-Uは柔軟で直感的で使いやすく、シミュレーションタスクにおける量子優位性を実現する方法を提案する。
論文 参考訳(メタデータ) (2023-03-10T19:00:33Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors [0.0]
連続可変量子計算に用いる新しい量子GAN(qGAN)のプロトタイプを導入し,解析する。
量子と古典的判別器を備えた2つのCV qGANモデルを用いて、小型でカロリーの出力を再現する実験を行った。
論文 参考訳(メタデータ) (2021-01-26T23:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。