Encoding position by spins: Objectivity in the boson-spin model
- URL: http://arxiv.org/abs/2401.07690v2
- Date: Fri, 3 May 2024 18:37:01 GMT
- Title: Encoding position by spins: Objectivity in the boson-spin model
- Authors: Tae-Hun Lee, Jarosław K. Korbicz,
- Abstract summary: We investigate quantum objectivity in the boson-spin model.
We analyze how information about a continuous position variable can be encoded into finite-dimensional environments.
We derive the characteristic length scales, corresponding to decoherence and precision of the encoding.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate quantum objectivity in the boson-spin model, where a central harmonic oscillator interacts with a thermal bath of spin-1/2 systems. We analyze how information about a continuous position variable can be encoded into discrete, finite-dimensional environments. More precisely, we study conditions under which the so-called Spectrum Broadcast Structures (SBS) can be formed in the model. These are multipartite quantum state structures, representing a mode-refined form of decoherence. Working in the recoil-less limit, we use the Floquet theory to show that despite its apparent simplicity, the model has a rich structure with different regimes, depending on the motion of the central system. In one of them, the faithful encoding of the position and hence objectivity are impossible irrespectively of the resources used. In other, large enough collections of spins will faithfully encode the position information. We derive the characteristic length scales, corresponding to decoherence and precision of the encoding.
Related papers
- Machine Learning-Enhanced Characterisation of Structured Spectral Densities: Leveraging the Reaction Coordinate Mapping [41.94295877935867]
Spectral densities encode essential information about system-environment interactions in open-quantum systems.
We leverage machine learning techniques to reconstruct key environmental features using the reaction coordinate mapping.
For a dissipative spin-boson model with a structured spectral density expressed as a sum of Lorentzian peaks, we demonstrate that the time evolution of a system observable can be used by a neural network to classify the spectral density as comprising one, two, or three Lorentzian peaks.
arXiv Detail & Related papers (2025-01-13T17:02:04Z) - Coherent spin-1 dynamics encoded in the rotational states of ultracold molecules [37.69303106863453]
rotational states of ultracold polar molecules possess long radiative lifetimes, microwave-domain coupling, and tunable dipolar interactions.
Coherent dynamics between pairs of rotational states have been used to demonstrate simple models of quantum magnetism and to manipulate quantum information stored as qubits.
arXiv Detail & Related papers (2024-12-19T17:35:57Z) - Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Exploring quantum localization with machine learning [39.58317527488534]
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
arXiv Detail & Related papers (2024-06-01T08:50:26Z) - Non-Gaussian dynamics of quantum fluctuations and mean-field limit in
open quantum central spin systems [0.0]
Central spin systems are paradigmatic models for nitrogen-vacancy centers and quantum dots.
Here, we derive exact results on the emergent behavior of open quantum central spin systems.
Our findings may become relevant for developing fully quantum descriptions of many-body solid-state devices.
arXiv Detail & Related papers (2023-05-24T20:23:31Z) - Quantum simulation of the central spin model with a Rydberg atom and
polar molecules in optical tweezers [0.0]
We propose an ultracold quantum simulator of a central spin model with XX (spin-exchanging) interactions.
By mapping internal particle states to spin states, spin-exchanging interactions can be simulated.
We numerically analyze two example dynamical scenarios which can be simulated in this setup.
arXiv Detail & Related papers (2023-02-28T17:17:59Z) - Digital Quantum Simulation of the Spin-Boson Model under Open System
Dynamics [1.5727276506140881]
We study how to simulate open quantum dynamics in a digital quantum computer.
We show that the key aspect is to simulate the unitary portion of the dynamics, while the dissipative part can lead to a more noise-resistant simulation.
arXiv Detail & Related papers (2022-10-28T06:03:35Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - An alternative formalism for modeling spin [0.0]
We present an alternative formalism for modeling spin. The ontological elements of this formalism are base-2 sequences of length $n$.
The machinery necessary to model physics is then developed by considering correlations between base-2 sequences.
arXiv Detail & Related papers (2021-10-24T15:49:48Z) - Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models [16.987004075528606]
We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states.
We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes.
We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models.
arXiv Detail & Related papers (2021-01-18T18:55:21Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.