論文の概要: Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden
Subgroup Problem
- arxiv url: http://arxiv.org/abs/2401.07934v1
- Date: Mon, 15 Jan 2024 19:52:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 16:00:05.145956
- Title: Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden
Subgroup Problem
- Title(参考訳): アベリア隠れ部分群問題に対するアルゴリズム量子スピードアップの実証
- Authors: P. Singkanipa, V. Kasatkin, Z. Zhou, G. Quiroz, D.A. Lidar
- Abstract要約: サイモンの問題は、未知の 2-to-1 関数に符号化された隠された周期を見つけることである。
隠れた周期がハミング重みに制限されたシモン問題の変種に対するアルゴリズム量子スピードアップを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simon's problem is to find a hidden period (a bitstring) encoded into an
unknown 2-to-1 function. It is one of the earliest problems for which an
exponential quantum speedup was proven for ideal, noiseless quantum computers,
albeit in the oracle model. Here, using two different 127-qubit IBM Quantum
superconducting processors, we demonstrate an algorithmic quantum speedup for a
variant of Simon's problem where the hidden period has a restricted Hamming
weight. The speedup is sub-exponential and is enhanced when the computation is
protected by dynamical decoupling to suppress decoherence. The speedup is
further enhanced with measurement error mitigation. This constitutes a
demonstration of a bona fide quantum advantage for an Abelian hidden subgroup
problem.
- Abstract(参考訳): Simonの問題は、未知の2-to-1関数に符号化された隠れ周期(ビットストリング)を見つけることである。
これは、理想的でノイズのない量子コンピュータで指数的な量子スピードアップが証明された最も初期の問題の1つである。
ここでは、2つの異なる127量子ビットのIBM量子超伝導プロセッサを用いて、隠れた周期がハミング重みに制限されたシモン問題の変種に対するアルゴリズム量子スピードアップを示す。
スピードアップはサブ指数であり、デコヒーレンスを抑制するために動的デカップリングによって計算が保護されるときに強化される。
測定誤差軽減により、スピードアップをさらに強化する。
これは、アーベル隠れ部分群問題に対するボナフィデ量子アドバンテージのデモンストレーションを構成する。
関連論文リスト
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
一般化されたボトルネック補題を用いて、これらのツールの量子一般化を示す。
この補題は、古典的なハミング距離に類似する距離の量子測度に焦点を当てるが、一意に量子原理に根ざしている。
サブ線形障壁でさえも、ファインマン・カック法を用いて古典的から量子的なものを持ち上げて、厳密な下界の$T_mathrmmix = 2Omega(nalpha)$を確立する。
論文 参考訳(メタデータ) (2024-11-06T22:51:27Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
最適行列乗算重み更新(OMMWU)アルゴリズムを導入し,平均収束複雑性を$mathcalO(d/epsilon)$ to $epsilon$-Nash equilibriaとする。
この二次的なスピードアップは、量子ゼロサムゲームにおける$epsilon$-Nash平衡の計算のための新しいベンチマークを定めている。
論文 参考訳(メタデータ) (2023-11-17T20:38:38Z) - Quantum Speedups for Bayesian Network Structure Learning [0.0]
ノードが$n$のネットワークの場合、最も高速な既知のアルゴリズムは、最悪の場合は$O(cn)$で実行され、20年で改善はない。
近年の量子コンピューティングの発展に触発されて、BNSLが量子スピードアップを認めているかどうかを問う。
我々は、$c leq 1.817$と$c leq 1.982$の2つのアルゴリズムを与える。
論文 参考訳(メタデータ) (2023-05-31T09:15:28Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
本稿では,数種類のバイナリ最適化問題に対して,厳密な実行保証を有する量子アルゴリズムを提案する。
このアルゴリズムは、$n$非依存定数$c$に対して、時間で$O*(2(0.5-c)n)$の最適解を求める。
また、$k$-spinモデルからのランダムなインスタンスの多数と、完全に満足あるいはわずかにフラストレーションされた$k$-CSP式に対して、文 (a) がそうであることを示す。
論文 参考訳(メタデータ) (2022-12-03T02:45:23Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
しきい値定理は、フォールトトレラント量子計算の理論における基本的な結果である。
振幅雑音を伴う耐故障性量子計算の最大長に対する指数的上限を証明した。
論文 参考訳(メタデータ) (2022-01-31T22:19:49Z) - Solving the sampling problem of the Sycamore quantum circuits [6.0604034858265345]
本研究では,GoogleのSycamore量子回路の出力分布から,目的の忠実度を持つ独立サンプルを生成する問題について検討する。
本稿では,対応するテンソルネットワークを1回だけ契約することで,この問題を古典的に解決する手法を提案する。
530ドルキュービットと20ドルサイクルのSycamore量子超越回路では、無相関なビットストリングが100万個発生しました。
論文 参考訳(メタデータ) (2021-11-04T17:13:09Z) - Deterministic and Entanglement-Efficient Preparation of
Amplitude-Encoded Quantum Registers [0.533024001730262]
古典ベクトル $mathbfb$ は量子状態の振幅で符号化される。
任意の状態の$Q$ qubitsは通常、約2Q$のエンタングゲートを必要とする。
状態準備に必要な量子資源を柔軟に削減できる決定論的(非変分法)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-26T07:37:54Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
2つの未知の混合量子状態 $rho$ と $sigma$ に対して、それらの忠実度 $F(rho,sigma)$ は基本的な問題である。
我々は、この問題を$namepoly(log (N), r, 1/varepsilon)$ timeで解く量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-16T13:57:01Z) - Quantum Time-Space Tradeoff for Finding Multiple Collision Pairs [0.0]
ランダム関数 $f : [N] rightarrow [N]$ の衝突対を量子コンピュータを用いて探索する。
利用可能なメモリのサイズが制限された場合、関数に対するクエリの数は大幅に増加しなければなりません。
論文 参考訳(メタデータ) (2020-02-20T18:48:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。